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I. INTRODUCTION

The exact nature of transport and mixing processes in
turbulent flows has long intrigued designers and engineers.
More recently, the problems encountered in waste dispersion
have stimulated interest in the area of turbulent diffu-
sion. Since the source of most industrial and chemical
contaminants is in many cases close to solid boundaries,
the study of mass diffusion in a turbulent boundary layer
is of special interest.

In this investigation the characteristics of the
propagation of an impurity injected into the boundary layer
over a flat plate with zero longitudinal pressure gradieat
wlll be studied on the basis of a numerical solution of the
turbulent diffusion equation. 1In order to determine the
validity of the numerical solution, the predicted results
are compared to experimental data for a practical diffusion
problem; and finally, several solutions are presented to
provide some additional insight into the mechanics of the

turbulent diffusion process.




IT. RELATED INVESTIGATIONS

In 1921 6. I. Taylor [15]%* discussed diffusion of
material through the interior of a f£fluid using a statisti-
cal approach. He attempted to show that the statistical
properties of a fluid flow were sufficient to determine the
law which governs the average distribution of particles
initially concentrated at one peoint, at any subsequent
time.

In 1931 0. G. Sutton [16] extended the work of Taylor
to define an "effective" eddy diffusivity and diffusion
coefficient which would remain constant "over a field of a
few hundred meters to hundreds of kilometers.”" His
approach was also entirely statistical, and no attempt was
made to solve the problem with respect to the physical
properties of the fluid.

By 1950, the importance of the physical properties of
the ambient fluid, with respect to the diffusion process,
were being investigated; and the concept of eddy transport
was being utilized. In 1954 A. S. Monin and A. M. Obukhov,
[17] investigated the process of "turbuleant mixing in the
ground layer of the atmosphere on the basis of the theory

of similitude," and the numerical parameters involved in

#The number in brackets refers to a reference source listed
in the bibliography.




atmospheric diffusion were more exactly determined using
emplrical data from wind gradient observations made in the
USSR. Working formulas were obtained from this study for
determining the basic diffusion characteristics of the
ground layer, the layer of air immediately above the earth's
surface.

In 1962 Poreh and Cermak [9] summarized some experi-
mental work involving the diffusion of mass from a surface-
level line source into a boundary layer over a flat plate,
From the experimental data they formulated relations based
on a concept of eddy diffusivity to describe the mechanics
of the diffusion process.

In 1963, Morkovin [3] extended the work of Poreh and
Cermak to consider the correlation between the results of
the experimental work [9], the concepts of eddy diffu-
sivity, and the turbulent Schmidt number (the ratio of
momentum diffusion to mass diffusion) and the Prandtl num-
ber (the ratio of momentum diffusion to heat diffusion).
Morkovin concluded that (a) the shape of the quasi-similar
concentration profiles of Poreh and Cermak were consistent
with the concept of eddy diffusivity; (b) when the velocity
profiles of the bouqdary layer were locally simulated by
power profiles, the concept of eddy diffusivity led to the
experimentally observed result that in the first approxi-
mation the pollutant plume grew independently of the free-
stream velocity U_; (c) the concentration profile charac-

teristics were governed essentially by an eddy diffusivity




in the core of the turbulent layer and a smooth intermit-
tency cut-off as the edge of the layer was reached; and (d)
"The diffusivity coefficients depend upon the local charac-
teristic scales of the diffusing fields, which change during
the course of their development even in the presence of more
or less invariant eddy structure of the surrounding field."
Thus the so-called turbulent Schmidt number is not an abso-
lute number, but it depends upon the relative development of
the turbulent velocity field and the scalar diffusing field.
Morkovin divided the boundary layer into five analytical
segments to account for variations in the coefficlent of
eddy diffusivity: (a) a laminar sublayer, (b) a buffer
layer, (c) a "logarithmic" regime, (d) an inertially con-
trolled layer, and (e) a layer extending into the freestream
to approximate the intermittency drop-off. The precise
definition of the limits or boundaries of these layers
could present certain difficulties when modeling various
flow problems.

In 1969, Sayre [2] investigated the dispersion of silt
in an open channel using a technique which considered a
continuous variation of the eddy diffusivity coefficient in
the vertical direction. In his work, Sayre considered only
the turbulent transport of mass and expressed his results
in terms of a moment transformation for the diffused mass
distribution along the axis of the flow. Although this

method was accomplished with no loss of rigor, some of the

detail was lost. This work involved the introduction of a




concentration profile into a volume and then following the
volume downstream as the diffusion process progressed.

In 1970, Jobson and Saver [1l] extended the work of
Sayer [2] to include a numerical approximation to the
steady state solution of the turbulent diffusion equation
to predict concentration profiles in open channels. This
approach used an eddy diffusivity which varied as a function
of the vertical distance from the lower boundary of the
channel. Again only turbulent transfer was considered.
Their results agreed well with experimental data.

In the following pages, specific segments of informa-
tion are taken from designated references to develop the

theory utilized in this investigation.




ITII. DISCUSSION OF THE PROBLEM

In general, the problem of diffusion is to express
the turbulent transport of some scalar quantity in terms of
statistical functions of the turbulent motion and of the
boundary conditions. A complete solution of the transport
problem can be obtained only if there is a complete knowl-
edge of the turbulent motion. To overcome the difficulties
involved in completely describing the complex turbulent
motion, the concept of "eddy diffusivity" has been used in
meteorological and engineering studies.

Theories utilizing this concept have attempted to
relate the mean flux of the contaminant by turbulent fluc-
tuations to known variables of the turbulent field at the
same point. The assumption that this flux q; = EI—ET is
proportional to the gradient of the concentration (8c/3xi)
provides that the flux normal to the stream become
qy = v'e' = - ey(Bc/By) where Ey represents the mass coef-
ficient of eddy diffusivity. This mass coefficilient of eddy
diffusivity is analogous to the coefficient of molecular
diffusivity. The mass coefficient of eddy diffusivity has
been introduced as a mathematical operation in an attempt
to simplify the problem. Such a process has been found suc-
cessful in studies of free turbulence [8] where Ey may be

approximated by a constant.




In a boundary layer %7 is not equal to a constant [9],
and success has been reported in relating Ey to turbulent
quantities such as -[(ET;T)/(Bu/By)] which corresponds to an
eddy diffusivity for momentum transfer. This latter model
was reported to have been productive in a few cases of dif-
fusion, in homogeneous turbulence, from an area source
where a continuous flux of matter was emitted from a bound-
ary [11]. Such models usually divide the flow into distinct
layers and zones with an approximate value of ey assigned to
each layer and zone.

In this investigation a relation between the coeffi-
cient of eddy diffusivity for mass and momentum transport is
obtained which is continuous through the boundary layer and
is applicable for relatively large longitudinal distances
along the direction of the flow in the boundary layer.

Also, this relation accounts for the molecular diffusion
processes in both the so-called laminar sublayer and the
freestream above the boundary layer.

Utilization of the concept of eddy diffusivity and the
application of the principle of conservation of mass to an
incremental volume of flow yields the basic mass transfer
equation. This equation, see Sayre [18], is

3G, Wo& — 2 [Xa_éi_ @3] (1)
ok ax; OX; oX;

which may be written as




9Ci 4 U; 3G _ P_[X,LEE] (2)
ot aXJ bXJ aXJ

where X=X+ 63 .

In equation (2), c represents the concentration.of the
transferable scalar gquantity: t = time; uj = the local con-
vective velocity in the jth direction; xj = the jth coordi-
nate direction; and X = the molecular diffusivity coeffi-
cient.

The coordinate system used in this investigation is
shown in Figure 1, with x representing the direction of the
freestream, the y-axis is oriented along the vertilcal, and
the z-axis lies in the horizontal plane normal to the x-y
plane.

The expansion of equation (2) yields (Drop Bar Notation)

dc + udc = L[)LE’C-UC]*"E:‘&—*C?-Y (3)
t— r S
af  ax oyl 3y a3y

where €. represents the x-component of the eddy diffusivity
coefficient for mass transport. Jobson [1l] has shown that
the longitudinal gradlients are on the order of one percent
(1%) of the vertical gradients. Therefore the longitudinal
diffusion term sx(azclaxz) is neglected in this analysis,
and equation (3) becomes

?_‘5+1L§_<_>=§_[7L,3_£-—VC] 4 cdv %)

ot ox oy 3y oY
Equation (4) represents the governing equation for turbulent
mass transport in a two dimensional boundary layer type

flow.




In addition to the simplification previously intro-
duced, it is further assumed that the contaminant is intro-
duced into the flow in a quantity and with a velocity such
that the local flow velocities are negligibly affected.

The density of the contaminant is assumed to be approxi-
mately that of the ambient fluid. Hence the contaminant is
neutrally bouyant. These assumptions uncouple the solution
of the diffusion equation from any solution of the velocity
field over the flat plate.

For the turbulent flows of interest, the velocity field
1s usually approximated by some form of either a logarithmic
or a power law profile. For comparison purposes, two dif-~
ferent forms of approximations were used to describe the
velocity field in the two dimensional turbulent boundary
layer over the flat plate. The first approximation was the

universal logarithmic profile

¢= Afan + B (5)

Uy

Equation (5) is valid for 5’.<.Q§Qs and for Reynolds num-

where ¢=& Q-‘-gug and Y= /Tuy = shear velocity [8].
v I%

bers less than 106. For N < 5, a linear profile is assumed,

u=n

Uy
The second approximation represents the power-law form

as v Q(HL) (6)




where '§ = the boundary layer thickness, a = 1.0, and b = 1/7
for this investigation [8].

Equations (5) and (6) were used to provide the x-compo~
nent of velocity throughout the field. Once this was
accomplished, the continuity equation was integrated using
the trapezoidal rule to obtain the vertical component of the
local velocity. The error introduced by this method was of
the order (Ay)3 at every step [8].

For a complete analysis for the determination of the
velocity field, see Appendix A. With the velocity field
established, the problem remains to solve for the point

concentration throughout the field.

10




IV. NUMERICAL SOLUTION OF THE TURBULENT

DIFFUSION EQUATION

The turbulent diffusion equation is written as

2 4 ude - B [xde-ve] 4 ey
ot ox Bg bg dy

The term v is composed of two components: the fluid
velocity v and the mean fall velocity VS which equals zero
for a neutrally bouyant contaminant., The velocity compo-
nents, determined from a previous calculation, are con-
sldered to be constant at a particular point, The boundary

conditions are, at the surface of the plate,

X 8¢ - vec =0

where no settling or absorption of the contaminant is

experienced; and at y = +®, or far from the source,

2¢ = O
oY
The boundary condition at the surface of the plate

states that the net rate of supply of contaminant to the
region immediately above the surface due to the turbulent
mass transfer must be equally and oppositely balanced by
the rate of removal due to convection. The boundary con-
dition for y = +®, or far above the surface of the plate,

states that the gradient cannot exist at the upper limit of

11




the field of interest. This boundary condition requires
careful attention when the magnitude of the field height is
determined. The field must possess a height great enough
such that the plume of contaminant can never interact with
the boundary.

In addition to these boundary conditions, a source con-
dition is needed. This requires that some form of concen-
tration distribution be established at some beginning wvalue
of x.

To provide greater flexibility toward the solution of
the general mass transport problem, the turbulent diffusion
equation (4) was made dimensionless by introducing the fol-
lowing parameters where the prime notation indicates a

dimensionless quantity:

c' = Eg , dimensionless concentration
o
x' = f& , dimensionless distance along the x-coordinate
X
y' = f& , dimensionless distance along the y-direction
X
, _ t& . . v
t' = = dimensionless time (t' is x-dependent
L _
through &)
u Lx
u' = , dimensionless velocity in direction of flow
v Lx
v' = ——, dimensionless velocity in the vertical
€

direction

12



Pt o= xl/f , dimensionless transfer coefficient.

In the preceeding parameter list, Lx = the length of the
field of interest; ¢, = the maximum concentration at the
source; and £ = the depth averaged value of the eddy dif-
fusivity for momentum transfer. The nondimensional transfer
coefficient Y' represents the ratio of mass transfer to
momentum transfer and may be interpreted as the inverse of
the local Schmidt number.

Substitution of the listed parameters into equation (4)

yields (dropping the primed notation at this point)

B¢ 4 ude - 2 [Wl _wel,dr

ot ox  dy dy oy

Equation (7) is the nondimensional turbulent diffusion equa-
tion from which the local field concentrations may be
obtained with respect to the initial source concentration.
In the hypothetical uniform, two-~dimensional turbulent
boundary layer flow, the velocity components do not vary at
a point 1in the flow; and the concentration by volume is
small.

The boundary condition at the surface of the plate
becomes

Y% _-ve=0 ; (8)
%

and, in terms of nondimensional quantities, the boundary
condition at y = 4+ is 3¢/3y = 0. For a detailed treatment

of the boundary conditions and the source condition, see

i3



Appendix B.

In order to solve equation (7) for the field point con-
centration with respect to the source concentration, we must
determine an expression for ¥ = Y(x,y) as well as its par-
tial derivative with respect to the boundary layer coordi-
nate y. From our previous definition, ¥ = xl/f. Here
X1 = X + ey, and £ = 1/Ly £ yE dy where £ = vV + €, and Ly =
the total field height. From a known velocity and shear
stress distribution in a two-dimensional flow, the turbulent
momentum transfer coefficient, Em’ can be computed from

Boussinesq's definition:

P E€m U = a‘?g (9)
o
in which Ty = the shearing stress acting parallel to the

x coordinate on a surface normal to the y coordinate, and
p = the fluid density. For the two-dimensional flow con-
sidered here, the shear stress distribution can be repre-

sented as

’rxg=7-3<|‘.%> (10)
&
where Tw = the shear stress at the surface of the flat

plate.
Using the logarithmic velocity profile, equation (5),
in conjunction with the definition of ¥ and equations (9)

and (10), we have (see Appendix C)

14




<
|

= xllg for 0 <y < 8, and

(11)

¥ = x/€ for y>§.

In equation set (11),

X+ Yt ("%) (12)

X
R

and

§ = _Lﬁi + v . (13)
éQLa

Using the power law form of the velocity profile,

equation (&), we have ¥ =X1/E for y < § when
Ir
B

[I+_u_—£ 8  u# L]. (15)
«kU, L, v Q

In equation (15), @ = 6 - 5b + b2. Thus we have two

Kot

=V

and

approximatioms to the velocity field and their correspond-
ing Y-distributions.

With an approximate distribution for the nondimensional
transfer coefficient available, the finite difference quo-

tients for the derivatives in the diffusion equation (7)

n-1
i+l,]

at the previous time step.

were written implicitly in both time and space where ¢

n
1+1, 3

This formulation of the finite difference quotients required

repregsents the value of ¢

the establishment of a grid system as shown in Figure 2.
The indices i and j define the location of various points

with respect to the x and y axes respectively.

15




The development of a numerical solution of equation
(7) requires the consideration of two important elements.
First, at a given time the concentration c(x,y,t) at the
general point (i+l,j) is influenced by all the points of
region A in Figure 2. Secondly, second derivatives exist
only along one coordinate in the concentration equation.
Utilizing the above considerations, the partial derivatives
of equation (7) were written in finite difference form and
exhibit the four point relationship as illustrated in
Figure 3. Thus,

m-~1!

_S_C - Ciq—l,i - Ci+|»j
ot iy AL,
_a_g " - C?H,j - CiJ
aX i*hj AX
™ - - (16)
oc - 1C-3+1.j+l = Cii i1
33 i+l,‘j ZAg
2 m -~ m ~”
dc = Conju — 2Ci,; 4+ Cip,jor
2 z
oY 0, A

Substitution of the above finite difference quotients into

equation (7) with

m m

SH,§ =

R

4,

v
o |

results in the following expression,

16



~” ~

Ci-H,J'-l —U_Aiu,’ -+ R%};u,‘ — qZ:m ] ]
L 24y 244 4
VR TR, 2 ‘l’
+Cl+|;J . —I— 41, 3 —I— >+| ]
L AL, AX
m _ R v, (17)
+C.+ 1' _liLn—J-U. . — .Z-l-l, ! — 2+ i ]
hit L 'ZAH, ZA% Alga
=Cm—l + C,-':n‘\j ui-}-l o .
AT, AX

Letting the terms in brackets on the left hand side of
equation (17) be represented by A, B, and C, respectively,
and ‘representing the right hand side by D, we may write
(J-2) equations in (J-2) unknowns, for 2 < j < (J-1). This
results in a tridiagonal matrix type system of equations
which may be solved using an efficient algorithm suitable
for solving such a set of equations.

For varying values of j, equation (17) may be written

Baca. + Czcs = Dz - chu
(3<j<T-2)
QC F Big +C: i€y = B; (18)
(= -1) ¢
J'-ICJ'::;. %‘-IC$~I = D:r.r_ a-uc.r

where the terms C1 and CJ are determined from the boundary

conditions, see Appendix B,
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B

1
C - EC

Ci+1,1 = 3 Ci41,2 i+1,3; and C,

+1,7 = Ci+1,3-1 ¢
Equation set (18) is solved using subroutine TRIDAG along
the boundary layer coordinate, from the freestream to the
surface of the plate, for each step in the x-directiomn at a
given value of time.

To summarize, the computation scheme for calculation
of the point concentrations of pollutant throughout the
field is as follows: first, the physical dimensions of the
field are established, and the local velocities at each
point are determined using either of the velocity profile
approximations previously discussed. 1In conjunction with
the velocity calculations, the local values of the non-
dimensional transfer coefficient and its partial derivative
with respect to y 1is determined. ©Now, the solution of the
concentration field remains to be obtained. After the field
is initialized, the values of the concentrations throughout
the field set equal to zero except at the source where a
source concentration distribution is established, the
boundary conditions are invoked, and the diffusion equation
is evaluated along the boundary layer coordinate (y). The
result is a set of simultaneous equations having a tri-
diagonal matrix form. The solution of the tridiagonal
matrix yields the approximate point concentrations through-
out the boundary layer at x-station (i+1l). The solution is
repeated for all i-stations until the complete field is

obtained. The concentration field is said to have converged
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to the approximate steady state solution when the absolute
value of the difference between the values of the concentra-
tion, at a particular poiant, for the curreant and previous
time step is less than some constant, €. The convergence

criterion used in this investigation is

m m-1 -4
Ci-fi,j Ci+|,j <lo = ¢

where n represents the number of time steps required. A
provision was made in the computer program (Appendix E) to
eliminate, on the current time step, that portion of the
field which had converged on the previous time step.
Therefore, the concentration field was effectively reduced
to only two i-stations during the final time step solution.
Utilization of this feature saved considerable computer
time in each analysis.

The construction of a plausible procedure for obtain-
ing the values ¢ throughout the flow field leads to the
consideration of the question of whether these values
actually represent a good approximation to the solution of
the original partial differential equation. Supposing as
usual that ¢ possessed a sufficient number of partial
derivatives, a Taylor's expansion was written for the
n n-

1 R .
and ¢ . in equation

elements et . R cn s C., . ’ .
i4+1,j5+1 i+1,]3 i+l,j-1 i+1,]

(17). Replacement of these terms by their Taylor's expan-
sion and consolidation of the resulting expression resulted

in a truncation error proportional to Ax, Ayz, and At. Thus
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the truncation error approaches zero with Ax, Ay2 and At
and it is probable that the results from the implicit finite
difference formulation of the diffusion equation converge to
the solution of the partial differential equation as Ax,
Ayz, and At approach zero, provided the necessary stability
criteria are considered.

A stability analysis for the numerical solution yielded
the following results:

(a) No stability requirement exists in the y-direction
since the equations are actually solved along the y-coordi-
nate by a direct method.

(b) If Ay is such that K is real and negative, where

2 QY 2 '/
K:_'+&+éi+2[4’ —(v—m)]z ind

at  ax  agh ay* A ay®
2e A Y"
Ay~ <_4 then it is required to have

At < [-4 Y ax ]/[(U—%)%Ax + 4Yu ]

and ¥ < 0, This condition is physically unrealistic since
P ~ ey/sm < 0 implies a negative coefficient of eddy dif-
fusivity.

(c) Other than the stability condition established in
(b) above, the numerical solution is stable for all cases
where

(1) XK is real and greater than zero; with

Ag.zs4?’a/(v°%)& , and At > 0
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(2) X is complex and either positive or negative;

with Ag_ > 2(///(1;—39’) , and At > 0.

No stability problems were encountered in any of the
computer runs used in this investigation.
For a more detailed description of the stability analy-

sis, see Appendix D.
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V. DISCUSSION OF THE EXPERIMENTAL PROBLEM

To verify the results of the numerical solution of the
diffusion equation, several computer runs were made to
model an experiment dealing with the diffusion of gaseous
ammonia from a line source on the surface into the turbulent
boundary layer over a flat plate. The experiments were con-
ducted in a noncirculating wind tuannel located in the Fluid
Dynamics and Diffusion Laboratory of Colorado State Univer-
sity [19]. The test section was approximately 80 feet long
and 6 x 6 feet square, slightly increasing in width in the
direction of the flow to provide a zero longitudinal pres-
sure gradient.

Three ambient velocities of 9, 12, and 16 ft./sec.
were used in the experiment. Mean velocities were measured
by a manually balanced, constant temperature, hot-wire
anemometer. The mean velocity profiles within the test
section were approximately similar and were fitted to the
one-seventh power law formula, see Figure 2 of Poreh and
Cermak [9]. The boundary layer thickness § varied from 5
to 11 inches. (The boundary layer thickness was taken to
be the vertical height at which u = 0.99 U_.) The Reynolds
number U mb (8/V) varied from 25,000 to 56,000, and the
boundary layer was turbulent throughout the entire test

range.
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Anhydrous ammonia gas (NHB) was emitted from a line
source located on the plate surface., The molecular dif-
fusivity of ammonia at 25°C is X = 0.236 cm2/s. Samples of
the air-gas mixture were taken using a chemical gas analy-
zer, and air-gas withdrawal rates were adjusted to approxi-
mately the local velocity of the air stream except, of
course, near the surface, The minimum sampling time was
one minute, but the usual sampling time was between 2 and 3
minutes. The sampled air-gas mixture was passed through an
absorption tube containing dilute hydrochloric acid which
absorbed the ammonia. The absorbed ammonia was then chemi-
cally treated. The absolute quantities of ammonia were
determined with a photo-electric colorimeter.

A large number of samples were taken, and a standard
deviation of up to 6 percent was encountered between
separate readings of standard solutions taken at different
times using different preparations of Nessler's Reagent.
The colorimetric method was not accurate where very mild
concentrations were involved. This influenced the recorded
concentrations near the upper edge of the plume.

The data for the experiment were reproducible within a
deviation of 10 percent between averages of different runs
on different dates. Better data were obtained close to the
source in the Series I tests described below. The above
estimation of the error does not include the upper edge of
the plume which was less than 15 percent of the maximum

surface concentration and very small in its absolute value.
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Two series of experiments were conducted. In each
series three ambient velocities were used—9, 12, and 16
ft./sec. In Series I, the source was located on the plate
surface at a station X = 33.5 feet downstream of .the lead-
ing edge of the flat plate. Measurements were taken at
numerous heights through the boundary layer for stations
3, 5, 9, 15, and 21 feet downstream from the source. Data
from the Series I and Series II tests established the,
existence of quasi-similar concentration profiles which
divided the flow field into zones designated as "inter-
mediate," "transition," and "final," see Figure 7. The
Series I tests provided concentration profiles which were
categorized in the intermediate and transition zones. The
mass flux of ammonia per unit width in the Series I tests
was G = 0.66 mg/cm's.

In the Series II tests, the source was located at a
station 15.5 feet downstream of the leading edge of the
plate. Measurements were taken at 17, 23.5, 35.5, and 43.5
feet downstream from the source thus extending into the
final zone. The mass flux of ammonia per unit width in the
Series II tests was G = 0.55 mg/cm*s.

A relative rate parameter B was used to assist in
dividing the field downstream from the source into the zones
and in considering the effect of the non-homogeneous turbu-
lence of the flow field on the diffusion process.

A characteristic length to give an indication of the

rate of change of growth of the boundary layer was defined
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as Ly = §/(d6/dx). A similar length was defined to express
the rate of change in the diffusion process. With A equal
to a characteristic height of a region contaminated by the
ammonia, and c/cmax = f(o) where ¢ =1y /A, we define £(1l) =
0.50. Therefore we may write LA = A/(dA/dx), and the ratio
B = L,/Ls is a measure of the relative rate of growth of
the plume and the momentum boundary layer. The experi-
mental data [9]) were characterized into zones with the fol-
lowing approximate limits:

intermediate zone: R < 0.4,

transition zone: 0.4 < B < 0.85, and

final zone: B > 0.85 and approaches a constant

value of 1.00.

The preceeding discussion of the experiment was para-
phrased from reference J[9]. In this investigation the
experimental data from [9] is considered adequate to verify
the results of the numerical solution of the diffusion

equation.
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VI. COMPARISON OF EXPERIMENTAL AND

PREDICTED RESULTS

The experiment discussed in the previous chapter was

modeled using the computer solution of the diffusion equa-

tion. The tests for both Series I and Series II were
modeled using an ambient velocity of U = 9.0 ft./sec. for
a neutrally bouyant contaminant. The assumption of neutral

bouyancy was taken as an engineering approximation to the
problem; while in the actual experiment, the ammonia was
slightly bouyant due to the density differences existing
between the contaminant and the main flow of air. The one-
seventh power law was used to approximate the velocity pro-
files in the wind tunnel, as stated in the previous chap-
ter.

Figure 4 presents a comparison between the calculated
and measured boundary layer thickness along the test sec-
tion for ambient velocities of 9 and 12 feet/second. The
remaining comparisons of predicted and experimental data
will be made only for an ambient velocity of Uoo = 9 ft./
sec., The calculated boundary layer thickness is slightly
greater than that encountered in the experiment; however,
as seen from Figure 4(a) and 4(b), the rate of growth of
both the calculated and measured boundary layers is the

same.
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Figure 4 indicates the use of two values of the vari-
able NSIY, where NSIY represents the desired number of
intervals Ay inside the boundary layer at the trailing edge
of the concentration field. This variable exerts no influ-
ence upon the boundary layer thickness, Using this vari-
able one can alter the step size; Ay, which in turn alters
the magnitude of the vertical dimension of the flow field.

Figure 5 presents the boundary layer thickness for
distances downstream of the source. Hence, the rate of
growth of the boundary layer for a particular test series
can be compared to the rate of growth of the plume of
pollutant, Figure 6, for corresponding source locations.

Figure 6 compares the experimentally determined charac-
teristic plume height with the predicted value in the
intermediate zone for the Series I tests. The predicted
characteristic plume thickness for the Series Il tests is
also shown, and good agreement between the various sets of
data is observed. Note that for a given x-distance down-
stream from the source, the plume thickness for the Series I
predictions is greater than that for the Series II predic-
tions. This difference is due simply to the variation in
the source position relative to the leading edge of the
plate and hence to the variation in the boundary layer
thickness for a given distance downstream of the source.
Thus the importance of the relative rate parameter B, with

respect to the establishment of the zones of similarity for

the concentration profiles, is implied. The fact that B is
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not a universal function is clearly illustrated in Figures
10 and 11.

The predictions of the characteristic plume height for
the Series I tests agree well with the measured parameter
from a distance of about 60 cm. downstream of the source.
The predictions for the Series II1 tests are also very
reasonable. However, within about 40 cm. of the source,
the predictions do not provide very meaningful values of A
for either series of tests. This divergence from the
measured plume thickness near the source is believed to be
due to one or a combination of the following: (a)} the
longitudinal concentration gradients are mot initially
small, see Figures 15 and 16, and (b) the concept of a gra-
dient type eddy diffusivity coefficient is not known to be
valid until the plume thickness is relatively large compared
to the eddies causing the transfer. The data in Figure 6
implies that a larger number of steps (smaller Ay) taken
inside the boundary layer provides a better agreement
between the predicted and measured values of the character-
istic plume thickness.

For a sufficiently large distance downstream of the
source, satisfactory agreement between the predicted and
measured value of the characteristic plume thickness has
been established. Now we consider the concentration pro-
files characteristic of each zonme and compare the predicted

profiles with those obtained by experiment.
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Figure 7 presents the experimental concentration pro-
files encountered in the intermediate and final zones.

Mean or average profiles were drawn to depict a character-
istic shape of the profiles within a particular zone. Note
the shift in the curvature of the profile as the plume pro-
ceeds downstream of the source through the intermediate
zone to the final zone. For the final zone, the mean
experimental profile was determined under the conditions of
Series II tests in which the source was moved closer to the
leading edge of the plate. There was cousiderable scatter
in the experimental data taken in the final zone. This
scatter was probably due to the low absolute values of the
concentration near the edge of the plume so far from the
source.

Figure 8 compares the experimental and predicted con-
centration profiles for the Series I tests only. Data for
two values of NSIY are presented. Both profiles, (a) and
(b), contain data which extends through the intermediate
zone and into the transition zone. Excellent agreement
between the predicted and measured profiles 1s observed.
This implies the validity of the use of boundary layer
type approximations in the establishment of the final form
of the diffusion equation, except near the source. Also
the assumption that the pollutant was neutrally bouyant
seems well founded. In the intermediate zone, the longi-

tudinal gradients in the concentration field are small com-

pared to the vertical gradients.
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The ratio B is small, and the diffusion process does
not seem to be greatly affected by the rate of growth of
the boundary layer [9].

A comparison of experimental and predicted concentra-
tion profiles, for two values of NSIY, for the Series II
tests 1s presented in Figure 9. Note that as the value of
x, the distance downstream of the source, increases, the
predicted profiles shift from the intermediate zone profile
to that detected in the final zone. The deviation between
the experimental and predicted curves experiemnced here may
be related first to the assumption of a neutrally bouyant
pollutant and secondly to a discontinufity in the slope of
the distribution of the nondimensional transfer coefficient
which will be discussed later, see Figure 14. The error
introduced by the assumption that the ammonia gas was
neutrally bouyant appears to be most evident as the plume
approaches the final zone in its diffusion process. The
introduction of a positive (upward) mean fall velocity tends
to decrease the deviation between the calculated and mea-
sured diffusion parameters. Simultaneously conrnsider
Figures 9, 12, and 13 with Table II. Figure 9 shows that
with an increasing distance downstream of the source the
predicted concentration profiles indicate a trend to merge
with the mean experimental profile, Figure 13 indicates
that, as the experimental plume of the Series I tests

approaches the final zone—A/§ * 0.6, the predicted ratio of
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plume thickness to boundary layer thickness is somewhat
less than that encountered experimentally. Therefore the
lack of emphasis in the curvature of the predicted concen-
tration profiles of Figure 9 is due in part to the fact
that the simulated plume has not yet acquired the complete
characteristics of the final zone as experienced by the
experimental ammonia plume. The addition of amn artificial
bouyancy effect, Vs > 0, increases the ratio A/8 of the
simulated plume as the final zone is approached, see Table
II. This would provide better agreement between the pre-
dicted and observed concentration profiles of the final
zone. The preceeding results indicate that the particular
zones may have flexible boundaries. Also, the profiles
characteristic of each particular zone may vary slightly
according to the physical problem at hand.

Figures 10 and 11 compare the rate of growth of the
plume thickness with dimensionless functions of the boundary
layer thickness. The experimental data indicated that in
the final zone B asymptotically approached a comstant value
of 1.0, see Figure 13. Similarly, the value of A/8 should
approach a constant value of about 0.60. The final value
of B calculated for the final zone agrees with that obtained
from experiment. However, A/S approaches a constant value
slightly less than that encountered in the experiment. This
is due to the fact that the calculated value of § was larger

than that measured, while the calculated value of A was
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slightly less than that obtained from experiment.

Figure 13 compares the experimental and predicted
values of the relative rate parameter B for a nondimensional
distance downstream of the source, see Figure 12. Good
agreement is shown in the intermediate and final zone; while
near the source, the two curves, B, diverge.

Figure 13 also compares the experimental and calculated
values of the ratio A/S as a function of a dimensionléss
distance downstream of the source. The deviation between
the experimental and predicted values of A/S has been previ-
ously discussed.

As a whole, the comparison of the experimental data to
the results predicted by the numerical solution indicated
good agreement between the two, especially in the intermedi-
ate zone. An extension of the analysls of the experimental
and simulated data for the Series I tests is presented in
Figure 14. This figure i1llustrates the dependence of the
nondimensional transfer coefficient { upon the boundary
layer thickness and the distance downstream of the source.
Near the source, A/8 = .,162, the local value of Y increases
with the vertical distance through the plume and provides
for the rapid growth of the plume near the source. As the
Plume grows to the approximate thickness of the boundary
layer, the local value of ¥ near the upper edge of the plume
decreases. At this point A/S approaches a constant. Figure

14 clearly illustrates the inadequacies of models of
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atmospheric diffusion processes which consider a variation
in the mass diffusion coefficient with height only; since
the local value of Y 1is also a function of the distance
from the source.

The abrupt change in the slope of the YP-distribution
as the plume begins to interact with the edge of the bound-
ary layer has a definite effect on the concentration pro-
files in the final zone. Thig abrupt change in the yP-
distribution limits the effectiveness of the smooth
intermittency cut-off which should extend through the edge
of the boundary layer. Thus, far downstream from the
source, the constant value of k(y) = 1 restricts the
generality of the numerical solution, see Appendix C. How-
ever, acknowledging the gslope discontinuity in the Y-
distribution curve, the numerical solution readily describes
the physical characteristics of the diffusion process within
the two regions of interest, the turbulent boundary layer

and the adjacent free stream flow.
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VII. ANALYSIS OF SEVERAL DIFFUSION PROCESSES

AS MODELED BY THE NUMERICAL SOLUTION

A more general appreciation for the problem of mass
diffusion in a turbulent boundary layer may be obtained
from a study of Figures 15 and 16. The physical proper-
ties of the flow field are those of the Series I tests.
These figures define lines of constant concentration as a
plume is convected downstream of the source. The field
length is 39.92 feet, the field height is 1.38 feet, the
distance from the leading edge of the plate to the field
is 30.08 feet, and U_ = 9 ft./s. 1In Figure 15 the source
is located on the surface, Note that the region of maximum
concentration is located immediately above the surface
where the horizontal and vertical components of velocity
are a minimum. The changes in the rate of growth of the
plume are also evident, i.e., dA/dx is inversely propor-
tional to the distance downstream of the source. The maxi-
mum concentration changes in the x-direction are large near
the source and become gradual at some distance downstream
of the source.

In Figure 16 the properties of the flow field are
identical to those of Filigure 15, The only difference 1is
that the source is moved away from the surface. The maxi-

mum concentration at x-stations downstream of the source
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decreases rapidly as x increases. This 18 attributed to
the fact that the source 1s located near the point of maxi-
mum Y, a region of high turbulence. Thus the contaminant
quickly diffuses throughout the boundary layer. Once the
plume reaches the edge of the boundary layer, the rate of
growth decreases and becomes approximately equal to the
rate of growth of the boundary layer. As the greater hori-
zontal velocities in the upper region of the boundary layer
tend to sweep the contaminant downstream, the line of maxi-
mum concentration descends toward the surface of the plate,.
The vertical position of the maximum concentration line
inside the boundary layer is highly dependent upon the mag-
nitude of the local vertical component of velocity and 1is
thus dependent upon the lateral as well as the vertical
position of the source in the flow field.

Figure 17 presents a comparison between the solutions
derived from both the logarithmic and power law approxima-
tions to the velocity profiles. The diffusion problem to
which the solutions were applied is that of ammonia injected
into a turbulent boundary layer over a flat plate. The
physical properties of the problem are as follows: Lx =
0.5 feet, the leading edge of the field is 2.0 feet down-
stream of the leading edge of the plate, U_ = 5 feet/s., VS
= 0.0 feet/s., X = 0.000254 ft2/s., and XT = 2.5 feet and
represents the distance from the leading edge of the plate
to the trailing edge of the concentration field. The

source is located 2.04 feet downstream of the leading edge
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of the plate. The source was located above the surface of
the plate such that the ratios y/6]source for each solution
were approximately equal. This allowed a more direct com-
parison of the ability of each solution to describe the
diffusion process and eliminated the necessity of comparing
the ability of each velocity profile approximation to accu-
rately predict the boundary layer thickness over the plate.
Dimensionless concentration profiles as functions of y/§
are presented for two stations downstream of the source.

In both cases, the logarithmic approximation predicted the
greater maximum concentration in the plume, as well as a
narrower plume thickness. Both solutions indicate that

the point of maximum concentration for a particular station
along the plate descends toward the surface. The general
shape of the concentration profiles from the two solutions
indicate good comparison between the two. However, the
power law approximation is the superior of the two solu-
tions. The logarithmic approximation possesses two handi-
caps with respect to the simulation of the diffusion prob-
lems of Poreh and Cermak [9]. First it is limited in its
ability to accurately predict the velocity profiles and
boundary layer thicknesses for flows of large Reynolds
numbers. Secondly, the numerical solution based on the
logarithmic velocity profile approximation predicted plume
thicknesses which were less developed than those predicted

by the one-seventh power law simulation.
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The preceding comparison illustrates the fact that the
present method of solution may be applied to various
approximations of the velocity profiles for the flow field.
However, some relation between the particular velocity pro-
file approximation and the particular diffusion problem to
be investigated must be established before good results can
be expected.

Now, reconsider the numerical solutions for the Series
I tests. Table I illustrates the effect of an artificially
induced vertical velocity component upon the rate of growth
of the plume and hence on the relative rate parameter 8.
For a slightly bouyant contaminant, the magnitude of B
decreases due to an increase in dA/dx. This increased rate
of growth of the plume is evident from an increase in the
magnitude of the ratio A/S8, see Table II. Thus B is also
an indicator of the effects which local vertical velocity

components would have on the diffusion process.
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VIII. CONCLUSIONS AND REMARKS

Using the concept of eddy diffusivity and an analogy
between mass and momentum transport in a turbulent boundary
layer, a numerical solution of the turbulent diffusion
equation was developed, and its results were compared to
the experimental evidence of Poreh and Cermak [9]. Also,
several other diffusion problems were investigated on the
basis of the numerical solution.

From the results presented earlier, several conclusions
can be specifically stated as follows:

(1) In the ammonia diffusion experiments [9] the
observed shape of the quasi-similar concentration profiles
in the "intermediate" and '"final'" zones together with the
predicted profiles from the numerical solution establish
the applicability of the concept of eddy diffusivity toward
the solution of mass diffusion problems. The ultimate test
of the suitability of the eddy diffusivity to solutions of
the diffusion equation is the degree to which it predicts
the concentration profiles. Good agreement between mea-
sured and predicted concentration profiles was experienced
in this investigation with the velocity profiles being
simulated locally by the power law formula.

(2) The numerical solution provided a good approxima-

tion to the rate of growth of the plume thickness. The
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deviation of the predicted data from that taken from the
experiment in the region close to the source cannot be con-
demned since "Very large velocity and concentration gradi-
ents made it impossible to obtain reliable data close to
the source" [9].

(3) Within the "intermediate" zone, the plume is
totally submerged in the boundary layer. Here the rate of
growth of the plume 1is large compared to the rate of growth
of the boundary layer. Therefore, the diffusion pattern is
affected only slightly by the boundary layer changes in the
zone; and as seen from Figure 14, the local value of the
nondimensional transfer coefficient plays a dominant role
in the overall diffusion process.

(4) Recalling that the "lntermediate" zone can be
regarded as an approximate model for atmospheric diffusion
from a ground source in the absence of bouyancy forces, one
concludes from the data presented in Figures 14, 15, and 16
that a description of the ability of the atmosphere to
diffuse matter in terms of mass eddy diffusivity coefficients
varying only with height 1s incomplete and misleading.

(5) Near the source on the plate surface, the laminar
sublayer has a small effect upon the rate of growth of the
plume. However, dominant elements in thediffusion process
consist of the magnitude and slope of the nondimensional
transfer coefficient.

(6) The concentration profile characteristics in the

final zone are governed essentially by a large diffusivity
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throughout the core of the turbulent layer in conjunction
with a smooth intermittency cut-off as the outer edge of
the boundary layer is approached from within.

(7) The boundary layer approximations and the Reynolds
analogy, ey = k(y) € where k(y) = 1, may be used to
describe the turbulent diffusion process within the "inter-
mediate" zone. Good results are also obtained using these
approximations in the "final" zone. However, a refinement
is required for the description of the diffusion in the
"initial" zone, close to the source, where the longitudinal
concentration gradient is not small. Diffusion in this
region is indicated to be dependent upon the existence of
smaller, localized eddies near the source. As the plume
grows, the importance of these smaller eddies diminishes,
and the diffusion process becomes dominated by the larger
eddies of the flow field.

(8) The basic numerical model developed in this inves-
tigation constitutes an efficient tool which adequately
describes the diffusion processes present in a turbulent
boundary layer for sources on the surface as well as for
those sources abowe the surface.

An important feature of the numerical solution lies in
its flexibility to consider the effects of various formula-
tions of the mass eddy diffusivity coefficient upon the
diffusion process as a whole. The construction of the

solution with its associated computer program provides for
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its adaptation, with considerable ease, to other diffusion
processes of interest, in particular those which require
only the modification of such elements as the boundary con-
ditions or velocity profile simulations. When various dif-
fusion problems are considered, it should be kept in mind
that the chosen approximation to the local velocity field
should be compatible with the diffusion process as a whole.
That is, postulates concerning the eddy diffusivity for
scalar fields with a history of development different from
that of the carrier turbulent field may lead to misleading
engineering results unless supported by additional informa-

tion concerning the behavior of these fields.
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ABSTRACT

A numerical solution of the turbulent mass transport
equation utilizing the concept of eddy diffusivity is pre-
sented as an efficient method of investigating turbulent
mass transport in boundary layer type flows. A Fortran
computer program is used to study the two-dimensional dif-
fusion of ammonia, from a line source on the surface, into
a turbulent boundary layer over a flat plate., The results
of the numerical solution are compared with experimental
data to verify the results of the solution. Several other
solutions to diffusion problems are presented to illustrate
the versatility of the computer program and to provide some

insight into the problem of mass diffusion as a whole,
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TABLE I:

EFFECTS OF AN ARTIFICIALLY INDUCED VERTICAL

VELOCITY COMPONENT ON THE RATE OF PLUME GROWTH

v, = 0.0 ft./s. vV, = 0.015 ft./s.
X ~ cm. dd/dx dA/dx B dA/dx B
34.77].1628-01 | .3579-01 | .5749-01 ] .3669-~01 | .5758-01
104.3 |.1607-01| .1760-01 | .1636+00 | .1840-01 |} .1615+00
173.8 {.1588-01 | .1527-01 | .2273+00 | .1608-01 | .2235+00
243.4 |.1570-01 | .1344-01 | .2918+00 | .1429-01 | .2840+4+00
312.9 |.1553-01 | .1240-01 | .3437+00 | .1289-01 | .3431+00
382.4 {.1538-01 | .1144-01 | .39434+00 | .1226-01 | .3834+00
452,0 |.1523-01 ; .1048-01 | .4500+00 | .1132-01 | .4343+00
521.5 |.1509-01 | .1011-01 | .4822+4+00 | .1065~01 | .4782+00
591.0 [.1496-01 | .9340-02 | .5394+00 | .1022-01 | .5121+400
660.6 |.1483-01 | .9129-02 | .5586+00 | .9649-02 | .5541+00
730.1 |.1471-D1 | .8550-02 | .6054+00 | .9385-02 | .5792+00
799.6 |.1460-01 1 .8371-02 | .6256+00 | .8939-02 | .6162+00
869.2 |.1449-01 | .7975-02 | .6627+00 | .8738-02 | .6368+00
938.7 |.1438-01 | .7781-02 | .6836+00 | .8434~02 | .6653+00
1008.0 |.1428-01 ] .7589-02 | .7048+4+00 | .8298-02 | .6805+00
U, = 9.0 ft./s.
Lx = 39.92 ft.
Ly = 25.09 in.
Gmax = 14.85 in.
Dist. from L.E. of Plate to L.E. of Field = 30.08 ft.
Reynolds Number at Leading Edge of Field = .1728+07
at Traliling Edge of Field = .4020+07

Reynolds Number

Number of Ay-steps Inside B.L. at Gm
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TABLE II:

EFFECTS OF AN ARTIFICIALLY INDUCED VERTICAL VELO-

CITY COMPONENT ON THE RATIO OF PLUME THICKNESS TO BOUNDARY

LAYER THICKNESS

v, - 0.00 ft./s. vV, = 0.015 ft./s.
X ~ cm | A/ A/6
34.77 .1264 .1298
104.3 .1792 .1849
173.8 .2186 2262
243.4 .2498 .2584
312.9 2743 .2847
382.4 2935 .3058
452.0 3098 .3228
521.5 3231 «3377
591.0 3343 .3499
660.6 3438 .3605
730.1 .3519 .3695
799.6 3588 .3774
869.2 3648 .3841
938.7 3698 .3902
1008.0 3745 .3954
U, = 9.0 ft./s.
< - 39.92 ft.
Ly = 25.09 in.
max - 14.85 4in.
Distance from Leading Edge of Plat to Leading Edge of

field =

30.08 ft.

Number of steps inside boundary layer at Gm = 30
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APPENDIX A: DETERMINATION OF THE

LOCAL VELOCITY COMPONENTS

First consider the universal logarithmic velocity pro-
file. For Reynolds numbers less than 106 we may use the
following forms to represent the velocity profile in the
turbulent boundary layer. For n < 5, where n = j;Ei a

linear profile is satisfactory. That is

&= q , whereu, = shear velocity. (A-1)
("
For values of n between 5 and rls‘:- __.&SU we have
li*

In this investigation A = 5.85, and B = 5.56. For the above

values of the constants A and B, equation (A-2) becomes

W = w B . A-
U A o # % + (A-3)
W, v
For y = §, we have
U‘p: A b?c Sug + B . (A-4)
°
™
s
Now C;} = _|__’7L_i. . (A-5)
/3 f’lin
Here c'f is the local value of the skin friction coefficient
and Tw i8 the shear at the surface. Using the definition of
the shear velocity, uyz 2& and equation (A-5), we
,O
2
obtain (Ua,) - _%_ o
a,/ = ¢
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Writing equation (A-3) in the usual non-dimensional form
o o u,[ﬁ!@; Y U 4 B]
1
U U v
or

w2 [Hﬂo;my_ts+8]. -

From reference [8]
-2.3
' = - %) -
cf = [2 b?:oR" o ] , (A=7)

and we have

-237 Y%
u.*-.:/%. [(2 L?,o Rx - 0'65) ] : (A-8)

where Rx = Umx// with x = distance from the leading edge of
the plate. For a given value of x and y we may determine
the value of (u/U_,) using equations (A-6), (A-7), and (A-8).
Now a value of 8§, the boundary layer thickness, must be
determined for a given value of x. If y = §, from equation

(A-6) we have

|_-.‘/§,7[Hﬂag’o§;/gu+ B], and
[va(V27¢ -8B )]

8 ux = /0 . (A—Q)
V

Hence, a value of § = §(x) 1s available.

As a second approximation to the velocity profile in a
turbulent boundary layer, the power law form was invesgti-

gated. Here
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I3
Y=oa [%] (A-10)
U
where, for this investigation, a = 1.0 and b = 1/7,.

From reference [8]

-1
o(x) = .37 x [Ua,x] /5 , (A-11)
V
2 2 /
and us = U, 00225 [ﬁ%] 4 tA-12)

The vertical components of velocity were obtained from

the continuity equation

ou , dv - O,
d X Y
Integration of the above, using the trapezoidal rule,
ylelds
VM,N = Um,n-l —_A_g'[a_i.lm,hl + a_"_"m,N-l] - (A-13)
2 Lox 3x

3
- A U.(X, ) .
a7 [w ol y
In finite difference form suitable for manipulation in the

computer solution, equation (A-13) is written as

y',,.,,,., = "Jm,u-n - é.& [u‘mﬁ,n + um-H,N-I-LLm-I‘N_LLM'I'rJ-I ].
4ax
Use of the trapezoidal rule produced the best results when

compared to other methods of numerical integration for this

investigation.
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APPENDIX B: ANALYSIS OF THE BOUNDARY CONDITIONS

Except for the point -0of injection for a surface source,
there is no flux of mass either into or out of the surface
of the flat plate which bounds the field of study on one
side. For the particular case of interest, no mass is
allowed to accumulate on or to be absorbed by the surface

of the plate. Hence, the boundary condition at the surface

is Y 3¢ - vec = O (B-1)
%4
where v = v + Vs and v = the local vertical component of

velocity in the flow field while Vs the mean fall velocity

of the contaminant. At the surface v = 0 and we have

Y 2¢ - V,c = 0.
oY

Equation (B-1) states that the net rate of supply of con-

(B-2)

taminant to the region immediately above the surface due to
the turbulent mass transfer must be equally and oppositely
balanced by the rate of removal due to convection.

Consider the general case of steady flow of a pollu-

tant (j) across a surface, and make the following defini-

tions:
n" = the total rate of mass transfer across the
boundary,
ﬁg = ﬁ"mj Z the convected flux of component j at the
surface
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mj = the mass concentration of pollutant j, and
Yj = px which is analogous to U, the dynamic viscosity.
For no mass flux across the boundary, m" = 0.

Using the following illustration we may write a general

expression for the mass flux across the boundary.

. om
T m mj,o I -(Yj 5y )o
O _{— — — —~ — — — 90 Boundary
VZanm e
| |
[ |
il T
ﬁ"mle
o 1 ) - X- ) . _ m llm. - 0 _
vow MMyl ¥ YL Jlr ' (2-3)
4
Sirce m" = 0 we have - XJ 2 J| = o.
Ba .
= 0 ,» and our boundary

Now KJ¢O. Hence 2m-

condition (B-2) becomes

'a_g, - (B-4)
as 4/740, \é'a_—_o, and C‘,o#o’

Writing equation (B-4) in finite difference form we have

’ ! )
Ci+p,v = %’Ci-n,z - % c’i+|,3 ) (B~5)

where the primed notation indicates a nondimensional term.
Far from the source, y = +%, we require that no con-

centration gradient can exist between two adjacent points.
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Thus 0c _ 0 (B-6)
o4
represents the boundary coandition at y = +, In finite

= (' .

difference form we have c 1o, T 1

!
4+, T
The other condition needed is the concentration dis-
tribution at some beginning value of x. This condition is
referred to as the source condition. For a continuous

source this source condition is maintained throughout the

solution.

67



APPENDIX C: DETERMINATION OF THE NONDIMENSIONAL

EXCHANGE COEFFICIENTS

To obtain a value of the nondimensional exchange
coefficient which will be valid for the two primary
regions of interest, the turbulent core of the boundary
layer and the external free stream, use was made of the
eddy diffusivity concept and the analogy between the
methods of transport for mass and momentum. Writing the

boundary layer equation for momentum transfer we have

At r)XJ bXJ BXJ

or
XTIV - TV R I [f ?_‘_-*i] (c-1)
Y Toxg T o L &

d
where E: v + €m .

Considering mass transport we write

9C; 4 u; ¥¢; = 2 [Xaﬁi—c—é—uj]

b—fz J a'ij B_)-(J axJ
or

¢ 4 0 = 3_[71,29]

ot BXJ- axJ- ij (C-2)
where )L,: X + e, . In the preceding analysis, the bar

over the variables indicates an averaged value. Also, V =
kinematic viscosity of the fluid, and ¥ = the molecular

diffusivity coefficient of the contaminant. From equations

(C-1) and (C-2) we assume that the mechanics of mass
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transport are similar to the mechanics of momentum trana-
port, and hence €’=Jﬂy)em where k(y) is some arbitrary
function. Therefore we may write ¢‘= ‘x + k(g) €m. Now,
for the two-dimensional flow considered here the shear

stress distribution can be represented as

‘T;y--Tw[l-—%] (C-3)

From a known shear stress and velocity distribution in a
two~dimensional flow, the momentum transfer coefficient,

Em’ can be computed according to the Boussinesq definition
_— s
PEm 2 = Ty - (c-4)

Also, the nondimensional transfer coefficient is defined as

Ly
Y = ¥, /g where E: '/L”];fdy = the

depth averaged value of the momentum transfer coefficient.
We must determine values for Em’ E, and Y for both approxi-
mations to the velocity field over the flat plate. Con-

sidering the logarithmic profile first we have

gzaz..-aq+8. (C-5)

*

Considering equations (C-3), (C-4), and (C-5) simultane-

ously, we have

€

m

il
2
|5

with

3 ="’['+%(|—ﬂ_)] (c-6)



for O < n < st N

and £§ =V (c-7)
for Q > qs .

Averaging the value of § over the depth of the field con-

sidered (Ly) we obtain

F=w/[_rz;+|] (C-8)

6An
Y
where _ Su and = L, U Equation (C-8)
= b= =
may also be written as g= w 52 + 4 .
6A L,

Substitution of equation (C-8) into the definition of U

yields Y= %’l = M%G—’" , and

for O X n < ’]8 \
/E; (C-9)

bl ek (g ('-%)]:/s |

As a particular case we assume that k(y) = 1.

For n > Qs , Y= X . (C-10)

3

In addition to the value of ¥ for various positions through

—J

Y=[x+kepnv - kop n'v
| A Ang

or

the boundary layer, the solution also requires an expression
for B_"li . For Oﬁg <&,
oY
Y _ Ux [1-2&] , (c-11)
oY A¥ 5
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and for y > S » ﬂ = o . (Cc-12)
2y
Now consider power law approximation to the velocity

field and its corresponding form .of the nondimensional

transfer coefficient. For this case

L

I

(- -]

From the simultaneous consideration of equations (C-3),

(C-4), and (C-13) we obtain

€ - uls (1-4) &«]
m = _Zx 2 - : (C-14)
a A U, [g] [l 5
From (C-14) for O 58 <686 we have
(1-4) .
=V | + W, U*S _ , (C-
d { o v # -4 )
or for o< rl < rls -1 -
f - V ux. [ ﬂ_ -
e al U, T q] [| qs]_
For Y >s 2= . (c-16)
Averaging £ over the entire depth of the field we
obtain
& = \/[ Uy & Ul L ] (c-17)
't L, v O
where Q = 6 - 5b + b . Equation (C-17) may also be written
- 2
s =V WU |
o [ by, %‘, e] ] '

From the definition of the nondimensional transfer coeffi-

cient and equation (C-17) we obtain, with k(y) = 1,
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¥ = [1 . [f]M [ -%]]/f (c-18)

for 05355 , and for y>6

()U = -?— . (C-19)

Written in terms of n, equation (C-18) becomes

p-[eeepene 18] 020/

for O < q < rl& . Again considering the special case,

k(y) = 1, we obtain the variation of Yy in the y-direction.

For OZS%# <8

2 A
2 _ __ us [,?] [(l—L)—(Z—lr)g], (C-20)

or ,_ o _
Yo e (3 [ EP )
For %>'5

¥ -o. (c-21)

o4
A plot of Y vs y/S is given in Figure 14 for the velocity

field approximated by the power law profile.
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APPENDIX D: STABILITY ANALYSIS OF

NUMERICAL SOLUTION

Equation (17) may be written as

~m ~m m m-| ~m
Cinjor A+ Ciu jB 4l =06, ;D gk
rY/
whereA--v+ /a”'_ wz
20y 248y Ay
B L + 4 4 2¥
At AX Ay
C = v 3y v
20y 24y Ag,z
D = L
af
E = _&.
AX
Now let
Ci*')J-l = X"H'l YJ'l Tm )
Civig =X Yy T,
C’i+l,J+| = Xi Yjﬂ Tm
m=-1
Ci+l,J’ = Xi+l YJ TM—I"
and
c;l"- = X.l YJ' T.g .

Substitution of (D-2) into (D-1) yields

Xisg [~ Ton D]~ X:E =0
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1%!

K=Y,,A+ B+ Y;,,C . (D-4
‘3J ] \3J )

Equation (D-4) may be rewritten as

where

i, A+ Y, [-B—K]+Yj+, cC=0, (D-5)

Define a -matrix L such that (L-)i,:] '81_1’3 .

Then (|=\_()J. = §(-'=)jk (y—)k = SJ-',R Y, = yj_l .

T
Similarly, ( |= )i J= 85*' J so that

T
(L: I) J = \j+, . Substitution of the preceding

relations for Y and Y into equation (D-5) yields

J+1 3-1

Y[LA+1(B-K)+ L C] =0, (0-6)

where the matrix L is lower triangular, LT is upper tri-
angular, and I represents the unity matrix. For a unique

solution to exist, the matrix in brackets in equation (D-6)

must be singular. Thus dat I LA + I (B-K) + |=TC|=O.

From theorem 4.2 of Varga [12],
dit |AL + (B-KI I + CL7| = dat [(ACY*(L+L") + (B-KIL'],

Therefore (K-B) is an eigenvalue of the matrix

Vnc (|=+|=T) . From Chapter 9 of Issacson [13], the
TP
eigenvalues of (L + ET) are 2 COS 3-_ ) P=|,2,“'J"l .

Therefore K=B + 2 JHC cos %E ’ (D-7)

[14]. Now consider the x and time equation (D-3). Assume
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P ]
a solution of the form '1:‘= X and Xi = %x .

Substitution of these assumed solution forms into (D-3)

yields A= QK*’—E . (D-8)
For stability, | A | < 1 i1s required. Therefore the stipu-

lation that -1 < Jzﬁ%J;- <+ I. was investigated for both

positive and negative values of K with the following

results.

(a) No stability conditions exist in the y-direction since
the equations are actually solved along the y-coordi-
nate by a direct method.

(b) If Ay is such that K is real and negative, where

(P 2 ./1
K==_L'+l£;+ngji + 2 q’z-(lf-B/S%) cos E#?
at Ax Ag," A54 4ay*
NV A h h aiti
an < , t the t
y (——:sggs—ji en con ons
g
-4Yu 2
at < //,[(U'— )%%g) AX +-'4'WLL] and
‘P < O must be satisfied. This condi-

tion is physically unrealistic since Y ~ €&€ < O
m
implies a negative coefficient of eddy diffusivity.
(c) Other than the stability condition established in (b)

above, the solution is stable for all cases where

(1) K is real and greater than zero with

2 2
Ag < 4“” and A't > O , and

(2) K is complex and |K| is either positive or negative

—éLl% and 15t > O.
° /ag)

with Ag >
(v -
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APPENDIX E: DESCRIPTION AND LISTING

OF THE COMPUTER PROGRAM

The description of the computer program 1s divided

into several segments as follows:

a. definition of input variables,

b. discussion of options available,

¢. discussion of output,

d. discussion of operations of the different

routines, and

e. listing of the computer program.

a. The

as follows:

I10PU

IOPV

I0OPC

IOPY

ICASEA

ICASEB

definitions of the required input variables are

an

of

an

of

an

of

an

of

integer which controls the optional
the horizontal velocity field.
integer which controls the optional
the vertical velocity field.
integer which controls the optional
the initial concentration field.
integer which controls the optional

the y/8 field matrix.

output

output

output

output

= an integer which controls the execution of

the logarithmic velocity profile approxima-

tions to the solution of the diffusion equation.

power law velocity profile approximations to the

solution of the diffusion equation.
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IDATA

an integer which controls the optional output
of supplementary data regarding the properties
of the turbulent transport field.

IPROF

an integer which controls the mode of mass
injection, either a two dimensional line
profile or line source injection.

ISLOT

an integer which controls the nature of the

position of the source, slot in the surface of

the plate or a line source above the surface.

VS = mean fall velocity, ft./sec.

RHOP = density of the pollutant, slugs/ft.3.

DIFM = molecular ditftfusion coefficient, ft.z/sec.

DIA = diameter of the injection probes, probes paral-
lel to the direction of the flow and in a plane
parallel to the plate surface, in inches.

CCOL = an integer which designates the column, see
Figure 2, in the grid system on which the
source 1is located.

CROW = an integer which designates the row in the grid
system of Figure 2 on which the source is
located. CROW also indicates the highest point
on the profile for the injection of a concen-
tration profile.

NOP = an integer which represents the numbers of injec-

tion probes per foot for the line source

located above the surface.
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line

LBARX = the field length in feet.
XSTART = the x~station at which the leading edge of
the concentration field is located.

VR = the freestream velocity, ft./sec.

EP €, the criteria for convergence.
NSIY = the number of steps (Ay) inside the boundary
layer at the trailing edge of the concentra-

tion field.

N1l = an integer which limits the number of convergence
checks in the solution.
N2 = an integer which controls the number of time

steps executed before the field is checked to
determine whether or not it has reached the
approximate steady state solution.

The following data is input only if the source is a

source (slot) on the plate surface.

MDOT = mass flux, mg./cm.zsec.

XS = location of the source with respect to the lead-
ing edge of the plate, ft.

CSLOT = the concentration of the pollutant at the
injection point, mg./cm.3.

If a concentration profile is being read in, each

point concentration along the profile must be input. This

input procedure is executed in subroutine CONN. The

input variable is Q which is dimensionless (c/Cma ).

X
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b. The optional output from the computer program is
avalilable according to the numerical value of the control
variables.

IOPU > 0, no initial wu-velocity matrix is output.

IOPV > 0, no initial v-velocity matrix is output.

IOPC > 0, no initial concentration field matrix is

output.

IOPY > 0, no y/8 field matrix is output.

ICASEA > 0, deletes the solution for the logarithmic

velocity profile approximations.

ICASEB > 0, deletes the solution for the power law

velocity profile approximations.

IDATA > 0, deletes the output of supplemental data.

IPROF > 0, implies a line source.

ISLOT > 0, mass is injected above the surface.

Some restrictions on the combinations of the above
variables are necessary. Either ICASEA or ICASEB must be
equal to zero for every run. When a concentration of
pollutant is injected into the stream in a profile instead
of a line source, the profile must begin on the surface and
extend upward to terminate on row CROW.

¢. The output from the program is categorized as optional
and standard. The standard output 1is that which 1is auto-
matically provided with each run, and this output will be
discussed first.

(1) The program designates which velocity pro-

file approximation 1s being run.. Profile A
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(Logarithmic) or Profile B (Power Law Formula).
(2) The following items are output to identify
the physical properties of the problem of interest:

(a) Freestream Velocity,

(b) Field Length,

(c) Field Height,

(d) Boundary Layer Thickness at Trailing
Edge of Field,

(e) Dimensionless Boundary Layer Thickness
(Used to determine whether or not the boundary
layer is turbulent [8]),

(f) Number of steps in the x and y direction,

(g) Nondimensional Dx and Dy,

(h) The injected mass, slugs/ft.sec.,

(i) The injected concentration, slugs/ft.3.

(j) Minimum concentration for visualization
(Applies only to pollutants containing carbon
particles such as smoke),

(k) Convergence criteria,

(1) Laminar or molecular diffusion coef-
ficient, ft,2/sec.,

(m) Mean fall velocity, ft./sec.

(n) Distance to the leading edge of the
field, ft.,

(o) Reynolds number at the leading edge of

the field,
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(p) Reynolds number at the trailing edge of
the field,

(q) Time Factor (An integer used to alter
the magnitude of At), and

(r) NSIY.

(3) The matrix of coefficients in the tridiagonal
matrix for the solution of the point concentrations is
output at the beginning and end of the solution to
serve as an indicator regarding the convergence of
the solution.

(4) The number of time steps required to reach
the steady state is output.

(5) The nondimensional concentration field matrix
18 output.

(6) A C/Cmax matrix is output.

Output which is optional and is used only as supple-
mentary information to enhance the usefulness of the
standard output 1is as follows:

(1) nondimensional At as a function of x,

(2) the boundary layer thickness in feet as a
function of x,

(3) E as a function of x, ft.zlsec.,

(4) u, as a function of x, ft./sec.,

(5) X/XT as a function of grid position,

(6) y/Ly as a function of grid position,

(7) initial u-velocity matrix, nondimensionalized

as [u/U_],
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(8) initial v-velocity matrix, nondimensionalized
1/2
/2y,

(9) If the mass is injected from a slot, output

as [v/U_ ) (U, x/V)

involving the characteristic plume height (cm.), x(cm.),

U, (em.?/sec.), ¢ (mg./em.3), A(em.), A/8, C__ U,

(mg:/cm.zsec.), x/8, d8/dx, dA/dx, and B is presented.

(10) A y/S matrix is optional output, and
(11) for slot imjection problems a matrix for y/i
1s output.

If the optional contrcl parameter IOPV and IOPY have
values 0 and 1 respectively, then a dimensicmal vertical
velocity field with dimensions of ft./sec. will be output
automatically.

d. The main program reads in the required data, except
for the dimensionless concentration profile when the IPROF
option is exercised. This main routine also calculates the
various problem identification and physical parameters
while it coordinates the activities of the variocus sub-
routines.

Subroutine CASEA determines elements of the horizomtal
velocity field (u/U_) for the logarithmic profile approxi-
mation. It also provides values of Y(PSI), At(DT), E(EM),
u, (USTAR), and § (DELTA) for use later in the solution.

Subroutine CASEB determines elements of the horizontal
velocity field (q/Um) using the power law formula. It also
provides the additional boundary layer and transport

properties listed above for subroutine CASEA.
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Subroutine VCOMP accepts grid point values for the
horizontal velocity components from either of subroutine
CASEA or CASEB and calculates a dimensional and a nondimen-
sional form of the local vertical velocity components. The
calculations of the vertical velocity components are made
by integrating the continuity equation numerically.

Subroutine CONN actually solves the diffusion equa-
tion utilizing information obtained from the supporting
routines., Of particular iInterest ig the fact that an injec-
tion of mass into the boundary layer using a profile injec-
tion is done so by reading a value of Q(CCOL, K), When K =
1, CROW, into subroutine CONN. Subroutine CONN contains
the entire solution of the diffusion equation to include

the calculation of 3w/3y| R for each particular

i+1,]3
approximation being executed for a given run. This sub-
routine does however rely upon subroutine TRIDAG for the
actual manipulation of the tridiagonal matrix. The non-
dimensional concentration at the surface is named
CC(M + 1, 1) while the nondimensional concentration at j = J
is CC(M + 1, J). The boundary conditions in finite differ-
ence form are idenitfied in the subroutine for easy access.
Subroutine TRIDAG manipulates the tridiagonal matrix
generated in subroutine CONN. Comments in the subroutine
itself describe its activities.

Subroutine PRINT handles the output, both optional and

standard, from the various subroutines. Various comment
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statements within the subroutine itsgelf identify the sgeg-
ments and functions of the subroutine,
e. A complete listing of the main program with its

supporting subroutines follows.
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s ialoloN el e ool eNoNaNe e XaXaXsXalninisataRaRa e

XSTART = DIST. FROM L.E. OF PLATE TO L.E. OF FIELD

LBARY = FIELD HEIGHT IN FT.
LBARX = FIELD LENGTHr FT.

VR = FREESTREAM VEL.» FT./SEC.
EP = CONVERGFNCE CRITERIA

NSIY = NG.CGF STEPS INSIDE Gl.Ll

N1 = ALLOWABLE NOe. OF CHECKS FOR CONVERGENCE

N2 = NO.OF TIME STEPS BETWEEN CONVERGENCE CHECKS
DY = NON=-DIM. STEP SIZE IN Y-DIR.

DX = NON-DIM. STEP SIZE IN X-DIR.

NOP = NO. OF INJECTION PROBES PER UNIT DEPTH
DIA = DIA. OF INJECTION PROBES» IN.

DIFM = LAM. MOM. DIFFUSION COEFF.r FT.2/SEC.

SC = LAMINAR SCHMIOT NO.

CCOL = COL.DESIGNATION FOR DISPERSANT INJECTION
CROW ROW DESIGWATION FOR DISPERSANT INJECTION
AMVC
I0PU>0» NO INITIAL U=VEL. MATRIX IS OQUTPUT
IOPV>0r NO INITIAL v~VEL. MATRIX IS QUTPUT

IOPC>0» NO INITIAL CONCENTRATION MATRIX IS OUTPUT

IOPY>0r NO Y/DELTA MATRIX IS QUTPUT

ICASEA>O0, DELETES THE SOLe FOR VELe. FIELD PROFILE A
ICASEB>0» DELETES THE SOL. FOR VEL. FIELD PROFILE B8

IDATA>0+» DELETES OUTPUT OF EXTRA DATAr ETC.
IPROF>0+ INPUT POINT SOURCE CONCENTRATION
IPROF=0r¢ INPUT SOURCE CONCENTRATION PROFILE
ISLOT=0r» MASS IS INJECTED FROM SLOT+ MG/CM/SEC
XS=X~STATION OF SLOT IN PLATEs FTe

DOUBLE PRECISION CSLOT,CMX(36)rSLM(36)

DOUBLE PRECISION SLAM(36)CMAX(36)»SLOD(36)
DOUBLE PRECISION DTLe¢DTNrY2,Y1oCLAMIDYY

ABSOLUTE MIN. CONCENTRATION FOR VISUALIZATION

DOUBLE PRECISION DXeDY»SNU»DT(36)»DELTA(36) +EM(36) yUST

&AR(36)

DOUBLE PRECISION U(36¢50)sV(36+50)+,CC(36+150)PSI(36250

&)
COMMON U»CCrV,DT,»PSI
REAL LBARX(LBARYMDOT
INTEGER CCOLsCROW
ICON=1

READ(5,9911) I0PU»IOPV»IOPC»IOPY»ICASEA, ICASEB» IDATArI

&PROF s 1ISLQT
99131 FORMAT(912)
READ(Ss L) VS*RHOP+DIFMeDIA+CCOL 2 CROW e NOP
READ(5/,1)LBARX» XSTART*VRIEPeNSIY N1 #N2
1 FORMAT(4F10.0,312)
IF(ISLOT.EQe0) READ(5+,1193) MDOT»XSeCSLOT
1193 FORMAT(3F10.0)
I=36
J=50
TFACT=3.00
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9853

9937
988

108

8877

RHO=RHOP

P1=3.1415926535

SNU=0.0001567

IFINAL=I - 1

DX=1.00/(1I-1)

IF(ISLOT.GT+0) XS=(CCOL~1) *DX*LBARK + XESTART
IF(ICASEAEQ.0)CALL CASEA(IrJr IDATAYNSIYsDXeXSTARTLBA

&RXRHO» DIFM'SNUOVR'TFACT'DY!LBARY!DELTA.EM'USTAR)
IF(ICASEB+EQ.0)CALL CASEB(I,»JrIDATAZNSIYsDXrXSTARTILBA
&RX¢RHO» DIFMy»SNUP VR TFACT»DY »LBARY 'DELTA»EM¢USTAR)

XT=LBARX + XSTART,
RNLE=VR*XSTART/SNU
RNTE=VR*XT/SNU
YYYZ e 37%XT# C(VR*XT/SNU) %% (=1./5,) ) /DSQRT (SNU*XT/VR)
HTIZLBARY*12,0
BLMAXF=DY*LBARX* (NSIY=-1)
BLMAXI=BLMAXF*12.,0
IF(ISLOT.EQ.D) GO TOo 9853
NGS=(DIA/DY/LBARX/12:) = 0.50
KNGS=CROW + NGS = 1
IF(DIACLT (DY*LBARX*12,.,)) KNGS=CROW
IF (KNGS«LT+CROW) KNGS=CROW
MDOT=RHO*VR*PI*NOP*(DIA*DIA/144./4.)
QA=MDOT/(VR*DIA/12.)
QRE=QE*32.20
GO TO 9937
MDOT=(0.013087125/71000.)*MDOT
GQR=CSLOY/515.799
QQA=QE*32¢2
AMVC=(0.02/5000.)/7QGQ
WRITE(69988)VRrLBARX ' LBARY +HTI» BLMAXF » BLMAXI»YYY
FORMAT(*1FREESTREAM VELOCITY = "+F6e29Y FT/SEC'1//
&' FIELD LENGTH = 'sFSe21" FTo"'2//»
&' FIELD HEIGHT = '+F5.22"' FT, = Y2FSe20" INv 2 /7
&' Bels THICKNESS AT T.Ee OF FIELD = '"4EQ.4,'FT = '»EQ,
&4r"INs*'»//9 ' DIMENSIONLESS Bele THICKNESS = V1F5.2)
WRITE(62108) IrJsDXsDYIMDOT»QQrQQQrAMVC
FORMAT(//+1H »'NO. OF STEPS IN X=DIRe = %512,10X,
&'NO. OF STEPS IN Y=DIR. = 'WI2¢//7
&' DX = *4EQ.4, 10Xe'0Y = '9EGeys 777
&' INJECTED MASS = ',E9.4¢* SLUG/FT/SECY1///y
&' INJECTED CONCENTRATION = ',EQ 4 SLUG/FT3 = "4EQul4s
&' LB/FT3%'¢//7/¢"' MIN. CONC. FOR VISUALIZATION = 1,
&F7.4,v NONDIMENSIONALIZED')
WRITE(6:8877)EP'DIFM!VSvXSTARToRNLEvRNTE-TFACTvNSIY
FORMAT(///+' CONVERGENCE CRITERIA = '2EQulY4y///1
&' LAMINAR MASS DIFF., COEFF. = Y2E9JUr FT2/SECY /77
&' MEAN FALL VELOCITY = "+F7450" FTo/SECe'1///0
&' DIST. TO LeE. OF FIELD = teFS5e20 FTe2v///
&' REYNOLDS NO« AT L.E. OF FIELD = Y2EQelir///,
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4369

4469
4569

4359
4459

4559
4259

7001

6000
6001

6666

6667

c
o
c

4981

&' REYNOLDS NO. AT T.E. OF FIELD = Y2E9el42///y
&' TIME FACTOR = "1F5e2¢///»
&' NO. OF STEPS IN Bele AT T.E. = 'oI2)

IF(IDATA.GT.0) 60 TO 4259
WRITE(604369)
FORMAT(*1'eSXe "I p14Xe "' X/X712¢//)
XT=LBARX + XSTART

DO 4469 L=1r1
XOXT=(DXx(L=1)*LBARX + XSTART)/XT
WRITE(6:4569)L ¢ XOXT
FORMAT(5X¢eI2¢10XeE9.4)
WRITE(604359)
FORMAT("1'¢5Xe*J?911Xr*Y/LBARY "2 //)
DO 4459 L=1,J
YOLY=DY*(L=1)*LBARX/LBARY
WRITE(6,4559)LrYOLY
FORMAT(5X»12¢10X,E9,.4)
IF{IOPY«GT.0) GO TO 6001

DO 6000 M=1r1

DO 6000 N=1rJ

IF(XSTART.«GT.0) GO TO 7001
IF(MeGT+1) GO TO 7001
CC(MrN)=0.00

GO TO 6000
Y=DY*DBLE(FLOAT(N=1) ) *LBARX
CC{MrN)ZY/DELTA(M)

CONTINUE

IF(IOPU.EQR.CQ) GO TO 6666
IF(IOPV.EQ.0) GO TO 6666
IF(IOPY.£Qs0) GO TO 6666

GO TO 6667

ICMX=1

IYLM=1

CALL PRINT(JeIOPUrIOPVeIOPY»IOPCeICONY ICMX»IYLM)
CONTINUE

CALL CONNCIrJrDXeDY,LBARX»SNU'EMIDELTAYMDOTsVSINL1eN2»

&XSTARTIVRIKNGS+DIA»GQrEP»CCOL»CROW, ICASEA» ICASEBINGS» I
&0PCyUSTARy DIFM.LBARY»IPROF)

PROVIDE NECESSARY OUTPUT FOR CORRELATION

WRITE(6r4981)
FORMAT("1%92Xe*J 9 10Xr ' X?99X» "ReN+s=DELTA'1gXs *VR*%D " »9X

& TCMAX ' v 9Xe "LAMBDA »8Xr *LAMBDA/DELTA'y 5X»!
&CMAX*%VR" ) 3Xe *X/7DELTAY//)

DO 4434 L=1r1

CMAX(L)=0.00

X=((DX*LBARX*x(L=1) + XSTART) = XS)*30.48
RD=VR*DELTA(L) /SNU

VRSD=VR*DELTA(L) *30.48%30.48

87




OO0

OO0

DO 4435 K=1»J

IF(CC(LPK) «GT.CMAX(L)) CMAX(L)=CC(LK)
4435 CONTINUE

CMX(L)=CMAX (L) *CSLOT

CMVR=CMAX (L) *CSLOT*VR*30.48

IF(1SLOT.GT«0) GO TO 4441

CAL. CHARACTERISTIC PLUME HEIGHT

CLAM=0.5%CMAX (L)
IF (CLAMJVLE.D0.00) GO TO 444l
DO 4436 K=2¢J
IF(SLAM(L) «GT.0.00) GO TO 4436
X0D=0,00
Y2=DY* (K=1) *LBARX
Y1=DY*(K=2)*[LBARX
IF(CC(LIK) e GE+CLAMeAND«CLAMSGE+CC(LPK=1)) GO TO 4436
IF(CC(L'K).LE.CLAM.ANDOCLAM.LE.CC(L'K-l)’ GO TO 4439
SLAM(L)=0.00
SLOD(L)=0.00
60 TO 4436
4439 DTL=CC{L,K=1) = CLAM
DIN=CC(L/K~=1) = CC(LvK)
bDYy=y1 - Y2
SLAM(L)=YL -~ DYY*DTL/DTN
SLMIL)=SLAM(L) *30.48
4440 SLOD(L)=SLAM(L)/DELTA(L)
X0D=xX*SLobD (L) /ssLmL)
4436 CONTINUE
GO TO 4356
4441 SLAM(L)=0.00
SLOD(LY=0.00
SLM(L)=0.,00
4356 WRITE(6r4438) LeXrROrVRSDeCMX (L) e SLM(L) vSLOD(L) rCMVRe X
&0D
4438 FORMAT(1IXrI2+4X918(EL10.425X))
4434 CONTINUE
IF(ISLOT.GT.0) GO To 7781

SOLVE FOR BETA

WRITE(699999)
9999 FORMAT('1')
DO 7779 L=1,1
IF(L.LE.CCOL) GO TOQ 7777
IF(L.GE.(I-1)) GO TO 7777
DUDX=(DELTACL+1) - GELTA(L=1))/(DX*xLBARX*2,)
DLOX=(sLAM(L+1) = SLAMIL=1))/(DX*xLBARX*2,)
IF(SLOD(L)=040) 7777077777778
7777 BETA=0.00
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OO0

7778
7779
7780

7781

3332

3333

3334
3331

PDDX=0.0

DLDX=0.00

60 TO 7779
BETA=SLOD (L) *DDDX/DLDX
WRITE(6¢7780) DODX DLDXsBETAL

FORMAT(2Xr 'ODDX = $sEQ.Ur5Xe'DLDX = tsETUHr5XrYBETA =
&' ¢eE9elyy 5Xe?I = *y12)

CON1 INUE

DETERMINE C/CMAX MATRIX

DO 3331 L=11

DO 3331 K=1+J

IF(CMAX(L) = 0.00) 3332r3332¢13333
CC(LrK)=0.,00

UL/K)=0.00

VIL/K)=0.00

GO TO 3331
UCL»K)=CClLrK) /CMAX (L)
IF(ISLOT.GT.0) GO TO 3331
VIL,K)=DY* (K=1)*L.BARX/SLAM(L)
CONTINUE

I0PU=0

I0pv=0

IF(ISLOT.GT.0) IOoPV=1

10PY=1

IopPC=1

ICON=1

ICMX=0

1YLm=¢

IF(ISLOT.GT«0) IYLM=1

CALL PRINT(J»IOPU»IOPV+IOPY»IOPCrICONrICMXoIYLM)
STOP

END
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OO0

55

SUBROUTINE CASEA(I v Je IDATAYNSIY»DXe XSTARTLBARX/RHQrD1
&FM» SNUr VR TFACT»DYLBARYDELTAEM)USTAR)

THIS SUBROUTINE CALCULATES THE HORIZ. VEL. FIELD
USING THE UNIVERSAL LOGARITHMIC PROFILE.

DOUBLE PRECISION DX»DYs»SNUIRN¢DELTrUSTARMIDELTAMe XY C
&1

DOUBLE PRECISION U(36¢50),U1(38¢50)¢V(36¢50)PSI(36950
&)

DOUBLE PRECISION DELTA(36)EM(36)9DT(36)»USTAR(36)
DOUBLE PRECISION CFL(36) »DELTN(36) vCFLMeCC(36¢50)
COMMON UeCCrVeDTPSI

REAL LBARX(!LBARY

WRITE(6155)

FORMAT{(' THE FOLLOWING DATA WAS COMPILED USING VEL. PR
&OFILE A'+//)

A=5485

B=5456

DO 1 K=1,1

X=DX*x(K=1)*LBARX + XSTART

IF(X=0.0)203¢2

U(1,1)=0.00

DO 4 L=2,J

uli,L)=1,.00

CELTA(1)=0.00

EM(1)=DIFM

USTAR(1)=0.00

CFL(1)=0.,00

DELTN(1)=0.00

CT(1)=DX*DIFM/TFACT/VR/LBARX

GO TO 1

RNZ=VR*X/SNU
U?TAR(K)z(VR/SQRT(Z.))*SQRT((2.*AL0610(RN)—0.65)**(-2-
&3))

CFLIK)=(2e*%ALOGLO(RN)=065) %% (=2,3)
DELTN(K)=10ex%{((1/A)%(DSQRT(2./CFL(K))=B))
DELTA(K)=DELTN(K)*SNU/USTAR(K)

CONTINUE .

DY=DELTA(I)/LBARX/(NSIY~1)

LBARY=DY* (J=1) *LBARX

CALCULATE U-VEL. FIELD

DO 11 K=1r1
EM(K)= (USTAR (K) *DELTA (K #DELTA(K) /64 /A/LBARY) + SNy
DT (K)=DX+EM(K) /LBARX/VR/TFACT

DO 11 L=1ed

Y=DY# (L=1) *LBARX

YY=Y#USTARIK) /SNU
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OO0

15

23
16

31
11

20

22
19

30

25
27
28

26
24

21
18

IF(Y~-DELTA(K)) 15+15+16

CONTINUE

IF(YY = 5¢) S5¢606

UKy L)=YY*USTAR(K)/VR

GO T0 23

UK L)=(AXALOGLO(YY) +B) *USTAR(K) /VR

CI=DIFM + (Y*USTAR(K)/A)*(1.-Y/DELTA(K))

G0 70 31

CI=DIFM
UlKeL)=1.00
PSI(KsL)=CI/EM(K)
VIKeL)=0.,00

CAL.EXTRA ELEMENTS FOR V=VEL. FIELD CAL.

IEXTRA=I + 2

DO 18 K=1»IEXTRA
IF(XSTART~0+00) 19,2019
IF(KEQ'IEXTRA) GO TO 19
IF(KeGTe«1) GO TO 21

DO 22 L=1vJd

Ul(Kri)=1.00

GO TO 18

IF(K.EQ+IEXTRA) GO T0O 30
IF{(KeGT+1) GO TO 21
IF(K-EQ-l) KL=~1
IF(K«EQ+IEXTRA) KL=1
XM=XSTART + DX*KL*LBARX
RNZVR*XM/SNU

USTARM= (VR/SQRT (24) ) *SQRT( (2. *%ALOG10(RN) ~0.65) *x* (=243

&)
CFLM=(2+*ALOG10(RN)=0.65)*x(=~2+,3)
DELT=10.%x((1./A)*(DSQRT(2./CFLM)=B))
DELTAM=DELT*SNU/USTARM
DO 24 L=1»J
Y=DY*(L-1) *LBARX
YY=Y*USTARM/SNU
IF(Y=DELTAM) 25,25:26
CONTINUE
IF(YY=5e) 27128¢28
UL{KeL)SYYRUSTAR/VR
GO TO 24
UL(KrL)=USTARM* (A*ALOGL0(YY)+B)/VR
GO 70 24
Ul(KsL)=1.00
CONTINUE
GO 70 18
DO 29 LL=1.J
UL(KeLL)=U(K=1rLL)

CONTINUE
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CAL. VERT+=VEL.FIELD

CALL VCOMP(IrJlDX'DY'VR'XSTART!LBARX!DELTA'UI)
IFCIDATA.GT.0) GO To 111
WRITE(6r12)

12 FORMAT('1"74"I’vT25r'DT"TQSv'DELTA"T67v'EM'0T89"U
&STAR"', T112"X'r/'T3"(~)"T25"(-)"T46"(FT)'0T
&65» ' (FT2/S5)'»T89, YFT/S) 'y T110s ' (FT)*,/7)

DO 13 K=1r1

X=XSTART + DX*(K=1)+*LBARX

WRITE(6s14) KIDT(K)'DELTA(K)'EM(K)'USTAR(K)IX
1y FORMAT(3X!12112Xp5(810-4112X))

13 CONTINUE

111 RETURN
END
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25
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SUBROUTINE CASEB(I,»Js IDATA/NSIYeDXeXSTARTLBARX?RHOYDI
&FM.» SNUr VR, TFACT»DY,LBARY»DELTA»EM»USTAR)

THIS SUBROUTINE CALCULATES THE HORIZ. VEL. FIELD
USING THE POWER LAW PROFILE.

DOUBLE PRECISION ETAY(ETADI/ETA»SKI»EQED

DOUBLE PRECISION DX,DY»SNU'DELTAM!XrYeCC(36¢50)
?OUBLE PRECISION U(36¢50),U1(38¢50)V(36+150)PSI(36¢50
&

DOUBLE PRECISION DELTA(36) EM(36)DT(36) 1 USTAR(36)
COMMON UrCCrViDTIPS]

REAL LBARXsLBARY

WRITE(6r25)

FORMAT(' THE FOLLOWING DATA WAS COMPILED USING VEL. PR
S&OFILE B'»//)

A=1.00

8:1./7.

@=6e = (5.%xB) + (8*5)

XT=LBARX + XSTART

DYZ e 37%XT* ( (SNU/VR/XT)*¥(1e/54) ) /LBARX/ (NSIY~-1)
LBARY=0Y#LBARX* (J~1)

DO 1 K=1,1

X=DX*(K=1)*LBARX + XSTART
DELTA(K)=«37%kX* (L (SNU/VR/X)*%{14a/5.))

IF{X-0.0) 21302

TO=0.00

GO TO 4
TO=RHO*VR*VR%,0225% ( (SNU/VR/DELTA(K) ) *x(,25))
USTAR(K)=DSQRT(TO/RHQ)

ETAY=LBARY*USTAR(K) /SNU

ETAD=CELTA(K) *USTAR(K) /SNU

EMUK)=sNU* (1. +USTAR(K)*ETAD*ETAD/A/R/VR/ETAY/Q)
IF(X~0.0) 6165

DT(K)=DX*DIFM/TFACT/VR/LBARX

GO TO 7

DT(K)=DX*EMIK) /LBARX/VR/TFACT

CAL. uU-VEL. FIELD

00 1 L=1,J

Y=DY*(L=-1)*LBARX

ETA=Y*USTAR(K) /SNU

ECED=ETA/ETAD

IF(Y~-DELTA(K)) 15¢15r16

UGKeL)=(Y/DELTA(K) ) #%B
SKI=DIFM+USTAR(K) *SNUXETAD* (EQED**(1.-B))*(1.=-EOED)/A/
&B/7VR

PSI(K,L)=SKI/EM(K)

GO 70 1
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(aNeaNe!

16

20

22
19

30

38
21
i8

12

14
13
11

&STAR?'
865+ ' (FT2/5)'»T89,

U(K»L)=1,00
PSI(K,L)=DIFM/EM(K)
VIK/L)=0.00
IEXTRA=I + 2

CAL. EXTRA ELEMENYS FOR V=VEL. FIELD CAL.,

DO 18 K=1+IEXTRA
IF(XSTART=0.0) 19+20r19
IF(K+EQ.IEXTRA) GO TO 19
IF(KeGTe1) GO TO 21

D0 22 L=1r4

Ul(KrL):l.OO

GO TO 18

IF(K+EQ.IEXTRA) GO TO 30
IF(K«GT+1) GO TO 21
IF(}\OEQOI) KL:“J.
IF(K+EQeIEXTRA) KL=I
XMZXSTART + DX*KL*LBARX
DELTAM=0 « 37%XM* ( (SNU/VR/XM) %% (14/5,.))
DO 38 L=1+J

Y=DY*(L=1) *LBARX
IF(YJLELDELTAM) UL(KPL)=A*((Y/DELTAM) **B)
IF(Y«GTDELTAM) UL(KeL)=1.00
CONTINUE

GO0 T0O 18

DO 29 tL=1,J
UL(KeLL)=U(K=1rLL)

CONTINUE

CAL. VERT-VEL. FIELD

CALL VCOMP(I+JrDXrDY?rVRIXSTARTLBARX+DELTA,UL)

IF(IDATA.GT.0) GO TQ 11
WRITE(6112)

FORMAT(’l"TQr'I'rT25"DT'vT45v'DELTA"T67"EM'vT89"U
TI120 X0 /0 T3r 8 (=) 10 T250 ' (=) 'y THELP ' (FT)'» T
Y(FT/S) Y s T110e Y (FT) ¢/ /)

00 13 K=1r1
X=XSTART + DX*(K<1)*LBARX

WRITE(6r14) KyDT(K)»DELTA(K) »EM(K) yUSTAR(K) ¢ X

FORMAT(3XrI2+12X15(EL10.4012X))
CONTINUE

RETURN

END

94




W F

400

SUBROUTINE VCOMP(Ir+JeDXeDY VR XSTART»LBARX+DELTA»UL)
COMMON U»CCrV»DT»PSI

DOUBLE PRECISION U1(38¢50)¢V(36¢50)rU(36¢50)DT{(36)PS
&I1(36+50)

DOUBLE PRECISION DXsDYsSNUs X2 CON'DELTA(36) ,CC(36450)
REAL LBARX

SNU=0,0001567

IEXTRA=I + 2

DO 1 K=1,IEXTRA

0O 1 L=1,d

UL(KeL)=UL(KsL)*VR

DO 2 m=1,1

MM=M + 1

DO 2 N=2,J

IF(XSTARTeLE.0¢) V(1¢N)=0.00

IF (XSTART«LE«0¢00+AND«M«EQ.1) GO TO 2

IF(N=2) 3¢304

TRAPEZOIDAL RULE

CONTINUE R
VIMeN)ZVIMeN=1)=(DY/DX/% ) (UL {MM+L e N) UL (MM+L1oN=1)=(U
&1(MM=1,N)+ UL(MM=1,N=1)))

CC(MeNIZV(MPIN)

0O 400 M=1,I1

X=DX*(M=1)*LBARX + XSTART

CON=DSQRT (VR*X/SHMNU)

GO 400 N=1,J

VIMsN)=(v(MPN)/VR) *CON

RETURN

END
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SUBROUTINE TRIDAG(JFrLsAeBrCrDrVrUJrUONE)

SOLUTION OF A SYSTEM OF LINEAR EQUATIONS HAVING A TRID
&IAGONAL
COEFFICIENT MATRIX.

THE EQUATIONS ARE NUMBERED FROM JF To L+ AND THEIR SUB
&=DIAGONAL»

DIAGONAL AND SUPER-DIAGONAL COEFFICIENTS ARE STORED IN
& THE VECTORS

Ar» Br AND Co THE COMPUTED SOLUTION VECTOR V(JF)eeesV(
&L) IS STORED

IN THE VECTOR V.

DOUBLE PRECISION A(50),B(50),C(50),D(50)
DOUBLE PRECISION V(50)+BETA(50) »GAMMA(50) »UONErUJ

eeee s COMPUTE INTERMEDIATE VECTORS BETA AND GAMMA.eqoo

BETA(JF)=B(JF)

GAMMA (JF)=D(JUF) /BETA(JF)

JFP1z JUF + 1

DO 100 I=JFP1.L

BETA(I)=B(I) - A(I)*C(I-1)/BETA(I-1)
GAMMA(I)=(D(I) - A(I)*GAMMA(I-1))/BETA(]I)

OOOQQCOMPUTE FINAL SOLUTION VECTOR V-oooo

LAST=L - JF

V(1)=yONE

viL)=yJ

DO 200 K=1l,LAST

I=L - K

VII)=gAMMA(I) = C([)*V(I+1)/BETA(I)
RETURN

END
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C
C
C

123

121
122

12

1101

SUBROUTINE CONN(IeJsDXsDYrLBARXSNU'EMrDELTA»MDOTIVSN
&1/N2» XSTART» VR KNGS DIAYQQrEPCCOL»CROW?r ICASEAY
&ICASEB/NGSe IOPC/USTARy DIFM+LBARY» IPROF)

COMMON UsCCrVeDTePSI -

DOUBLE PRECISION DXoDYeTOX»TDYDXSeDYSeSNUPR

LOUBLE PRECISION U(36+¢50),CC(36¢50)2U1(38:50)rV(36¢50)

DOUBLE PRECISION DT(36)'PSI(36¢50)¢EM(36) rDELTA(36)92US
&TAR(36)

DOUBLE PRECISION Q(36¢50)+A(50),B(50)+C(50)D(50Q)rZ2(50
&) CON,

REAL LBARXMDOT!LBARY

INTEGER CCOL/,CROW

INITIALIZE CONDITIONS

I0PUZ=}

lopv=1

Iopy=y

ICON=1

ICMX=1

IYyLm=1

DO 12 K=1»1

X=DX*¥(K=1)*LBARX + XSTART
IF(X=0.) 121,121,123
CON=DSQRT(VR*X/SKNU)

GO TO 122

CON=0.00

DO 12 KK=1,J

QIKrKK)=0.00

UK KK) UK KK ) #*VRXLBARX/ZEM(K)
VIKrKK)=(VIKsKK) *VR/CON) *LBARX/EM(K)
UL(KeKK)=0.00

CC(K?KK)=0.00

IF(IPROF.EQ.D) GO TO 4259

DO 1101 KKK=CROWrKNGS
IF(NGS-EG-O) NGS=1.00
QICCOLIKKKI=1,00

VICCOL KKKI=VICCOLIKKK) + VS*xLBARX/EM{CCOL)
UL(CCOLPKKK)=1.00
CCICCOLIKKKI=100

GO0 T0 7252

READ IN DIMENSIONLESS CONC. PROFILE

4259 DO 5298 K=1+CROW

598

READ(5+598) Q(CCOL/,K)

FORMAT(F10.0)

VICCOL»K)=VICCOLPK) + VSkLBARX/EM(CCOL)
CCICCOLrKI=Q(CCCLK)

5298 ULl(CCOL»K)I=Q(CCOLIK)
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OO0

C

OO0

7252

4362

4368
4369
1301

1031

1032

1033

IFIRST=CCOL - 1
IF(CROW+GT.1) IFIRST=CCOL
IF(IOPC+EQ+0) CALL PRINT(JsIOPU»IOPVsIOPYs»IOPCr»ICON?IC

&MX» IYLM)

SOLVE THE CONCENTRATION EQUATION

IFINAL=I - 1

ICON=0
DXS=DX * DX
DYS=DY * DY
TDX=2., * DX
T0Y=2, * DY
LL=0

DO 1420 ITER1=1eN1

DO 1320 ITER2=1:N2

DO 1230 M=IFIRST»IFINAL

IF(IPROF = 0) 4362436214368
LC=1

LK=CRQOW

GO TO 4369

LC=CROW

LKZKNGS

DO 1301 KKK=LCrLK
Ul(CCOLrKKK?=Q(CCOL »KKK)
CC{(CCOLIKKK)I=@{CCOL KKK)

DO 1220 K=1rdJ

YOD=DY * (K=1)* LBARX/DELTA(M+1)
IF(ICASEA.EQ.0) GO TO 1031
IF(ICASEB.EQ.0) GO 710 1032
IF(YODeLEe1¢0) R=(USTAR(M+1)/5¢65/7EM(MTL) ) x(1.=2,%YOD)
GO TO 1033

EB=1./7.

AA=1.00

IF(YOD.LE«J+0) R=0.00
IF(YOU.LE«D«0) GO TO 1033
IF(YODLE«1e0) R=(USTAR(M+ L) %x%2) % (YOD** (=B} ) *(1,~BB~{

&2.~83)*YOD) /AA/B3/VR/EM(M+1)

IF(YOD+G6Te10)R=0400

THE FOLLCWING F.De FORMS ARE DERIVED IN APPX.(AT)
A(K)=R/ZTDY = (V(i+1,K)/TDY + PSI(M+1,:K)/DYS)
BIK)=1.,/0T(M+1) + U(M+1+K)/DX + 2.%PSI(M+1,K)/DYS
ClK)=V(M+1/K)/ZTDY = (R/TDY + PSI(M+1.K)/DYS)
DIK)=Ul(M+1»K)/ZDT(M+1) + CC(MrKIxU{NM+1rK)/DX

CONSIDER CONCENTRATIONS AT THE BOQUNDARIES
IF(KeE@e2)G0 TO 1034

IF(KEQs {J=1)) GO TO 1035
G0 T0 1220°
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1034

1035
1220

157
158

2250
2251
1225

2252
2110

1232

non

1230

1318

1319
1320

C
Cc
C

1400

159

DIK)=D(K) =~ A(K)*CC(M+1rl)

GO T0 1220

DEK)I=D(K) = C(K)* CC{pt+lrJ}
IF(M=-CCOL) 2110r157+2110

IF(LL-0) 2110s153e2110

LL=1

WRITE(6r2250)

FORMAT(*T COEFFICIENT MATRIX'¢/}
WRITE(6r2251)

FORMATCE® Y SelO0Xre A r16Xe'BYrlE6Xr*Cr 016X 'DY2//)
DO 1225 K=1rJ

Y=DY*(K=1)*LBARX

BWRITE(6922252) YrA(K) ' BIK)eC(K¥ DK}
FORMATEIH +F4.2¢1P4EL7.7)

JROW=2

UONE=CC(M+Ir1)

UJ=CC (M+1rJ)

CALL TRIDAGUUROW»JrArBsCrDrZrUJrUONE)
00 1232 K=lrdJ

IF(ZUK) oLEe(2,E~38)) Z2(K)=0.00
CClm+1eKI=Z(K)

CONSIDER THE BOUNOARY CONDITIONS

CC(M+11)=(UoxCC(M+Lr2) = CC(MHL123}) /30
CCiMm+leJ)=CC(MELsJ=1)

CONTINUE

IF(ITERZ = N2) 1318/,132001320

DO 1319 M=IFIRST,»IFINAL

0O 1319 K=1rd

IF(CC(M*I'K’ eGT e -AND-UI (M"’l'K) -LE.O.) V(M"’l'K):V(M‘"l

&rK) + VS*LBARX/EM(M+1)

IF(CC(M+LPK) sLE+Oe s ANDSUL(M+1 2K oGTeGe) VIMTLIKIZV(M*]

&rK) ~ VS*LBARX/EM(M+1)
UL (Mt sK)=CCIM+1/K)
CONTINUE

CHECK FOR CONVERGENCE

MISIFIRST + 1

MFZIFINAL + 1

0O 1409 M=MIrnF

DO 1400 N=1rd

IF(DABS(CC(MeN)~UL(MeN))—-EP} 14GC0r1400,4001
Ul (MeNI=CC(MIN)

IF(M=IFINAL) 14099,159+1409

WRITE(6r2250)

WRITE(6r2251)

DO 1401 N=1rJ
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1401
1409

4001

1410

1420

15
5001
120

Y=DYx(N=1)*LBARX

WRITE(602252) YeA(N)rBIN)rCIN) e D(N)
CONTINUE

60 TO 5001

MP1z=M+1

DC 1410 L=NrJ

Ul(MeL)=CC(M,L)

DO 1420 II=MpPleMF

DO 1420 L=12J

Ul(1I,L)=CC(II,L)

L=N1 * N2

WRITE(6+,15) MP1lesNeL

FORMAT(////7»% CONVERGENCE OF C('rI2+%9»',1I2+') DID NOT
&OCCUR IN *21IS5,*' TRIES!')

CONTINUE

WRITE(6+120) ITERL(ITERZ

FORMAT(* ITERL = 'vI2¢? ITERZ2 = 'v12)
ICONZ=0

CALL PRINT(JeIOPUI IOPVIIOPY»IOPCsICON  ICMXyIYLM)
RETURN

END
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83

425
109

98
110

40
115

42

112
1111
111
6541

87

426

113
99
31

41

SUBROUTINE PRINT(Jr»IOPU»IOPVsIOPY»IOPCrICONsICMXrIYLM)
PRINT VELOCITY MATRICES

COMMON UsCCrVDTPSI

DOUBLE PRECISION U(36¢501sV(36¢50)+CCi362501PSI{(36250
&) DT (36)

INTEGER OPTN

IF(ICMX«EQ.D0) GO TQ 83

IF(IOPUGT.0) GO TO 6541

LL=1

LM=18

DO 111 NuM=1l,2

IF(ICMXeEQeD) WRITE(6+,425)

FORMAT(*1 C/CMAX MATRIX'¢/)

IF(ICMX.EQ.0) GO TO 98

WRITE(60109)

FORMAT('1 INITIAL U=VELOCITY FIELD'¢/)

GO TO (30+,40) )NUM

WRITE(6¢110)

FORMAT(' X=-STEP 1 2 3 4 5 6 7
& 8'15Xr 9 10 11 12 13 1y 15
& 16 17 180,/ ' Y=-STEP')

G0 TO 42

WRITE(6r115)

FORMAT (' X~STEP 19 20 21 22 23 24 25
& 26 14Xy 127 28 29 30 31 32 33
& 34 35 3619/ ' Y=STEP')

DO 111t K=1rJ

KK=(J=-K) + 1

WRITE(6r112) KKe (U(LPKK) sL=LLPLM)

FORMAT(3XrI2r2Xe18(F5.3¢1X))

CONTINUE

LL=LL + 18

LM=LM + 18

CONTINUE

IF(1YLM.EQeO) GO TO 87

IF(I0PV.GT.0) GO TO 6542

LL=1

LM=18

DO 114 NUM=1,2

IF(IYLM.EG.0) WRITE(6+426)

FORMAT('1 Y/LAMBDA MATRIX':/)

IF(IYLM.EQ.0) GO TO 99

WRITE(6r113)

FORMAT('1 INITIAL V=VELOCITY FIELD'»/)

GO TO (31r41)NUM

WRITE(60110)

GO TO 43

WRITE(6r115)
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43 00 1114 K=1rJ
KKz=(J=-K) + 1
WRITE(6,1122) KKo (V(LsKK) rLZLLeLM)

1122 FORMAT(3X112¢2Xr18(F5.321X))

1114 CONTINUE
LL=tL+18

114 LM=LM + 18

6542 CONTINUE
IF(IOPY.EQ.0) OPTN=1
IFCIOPY.GT.0) OPTN=g
IF(IOPV.EQ+0AND«IOPY+GT«0) IOPY=0
IF(IOPV.EQeO«ANDICONSGT40) IOPY=1
IF(IOPY.GT.0) GO TO 6543
LL=1
LM=18
DO 444 NuM=1,2
IF(OPTN.EQe1l) WRITE(6012225)

2225 FORMAT('1 Y/DELTA MATRIX*¢//)
IF(OPTN.EQ«0) WRITE(6r2235)

2235 FORMAT('1 V-VELOCITY FIELD ~= DIMENSIONAL'/,//)
GO TO (71¢81)NUM

71 WRITE(6,1116)

1116 FORMAT(' X-STEP 1 2 3 4 5 6
& Tre6X? '8 9 10 13 12 13
&14 1s 161 95% *17 18 /et Y=STEP?)
GO T0 73

81 WRITE(691117)

1117 FORMAT(' X-STEP 19 20 21 22 23 24
& 25',5X» 126 27 238 29 30 31
& 32 33 345X '35 36%r /9 Y=STEP')

73 DO 4444 K=1red

KK=(J=K) + 1
WRITE(6:442) KK (CC{LeKK)rLz=LLeLM)

442 FORMAT(1XrIZ2¢1Xe18(F6e3r1X))

g4y CONTINUE
LL=LL + 18

444 LM=LM + 18

6543 CONTINUE
IF(IOPCeGT«0.AND«ICONCGT+0) GO TO 7654
Li=1
LMz=18
DO 1333 NUM=1,2
IF(IOPC.EQeQ) WRITE(622009)

209 FORMAT('1 INITIAL CONCENTRATION MATRIX's/)
IF{ICONEQ«0) WRITE(6¢1123)

1123 FORMAT (') FINAL CONCENTRATION MATRIX'»/)
GO TO (90:91) »NUM

90 WRITE(6,1116)
GO0 TO 92

91 WRITE(601117)
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92 DO 4333 K=1rd
KK=(J-K) + 1
WRITE(61332) KK!(CC(LvKK)szLLvLM)
FORMAT(lXoIZ:erlB(FG.Qle))
4333 CONTINUE
LLsLL4 18
1333 LM=LM + 18
7654 CONTINUE
RETURN
END
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